
Ralf S. Klessen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The "Maggie―filament: Physical properties of a giant atomic cloud. Astronomy and Astrophysics, 2022, 657, A1.	2.1	8
2	PHANCS–MUSE: The H II region luminosity function of local star-forming galaxies. Astronomy and Astrophysics, 2022, 658, A188.	2.1	34
3	A 2–3 mm high-resolution molecular line survey towards the centre of the nearby spiral galaxy NGC 6946. Astronomy and Astrophysics, 2022, 659, A173.	2.1	14
4	Planetary nebula luminosity function distances for 19 galaxies observed by PHANGS–MUSE. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6087-6109.	1.6	15
5	The PHANGS-MUSE survey. Astronomy and Astrophysics, 2022, 659, A191.	2.1	96
6	A CO isotopologue Line Atlas within the Whirlpool galaxy Survey (CLAWS). Astronomy and Astrophysics, 2022, 662, A89.	2.1	9
7	Emission-line diagnostics of H <scp>ii</scp> regions using conditional invertible neural networks. Monthly Notices of the Royal Astronomical Society, 2022, 512, 617-647.	1.6	8
8	The PHANGS-HST Survey: Physics at High Angular Resolution in Nearby Galaxies with the Hubble Space Telescope. Astrophysical Journal, Supplement Series, 2022, 258, 10.	3.0	58
9	A tale of two DIGs: The relative role of H†II regions and low-mass hot evolved stars in powering the diffuse ionised gas (DIC) in PHANGS–MUSE galaxies. Astronomy and Astrophysics, 2022, 659, A26.	2.1	51
10	Gravity versus Magnetic Fields in Forming Molecular Clouds. Astrophysical Journal, 2022, 925, 196.	1.6	10
11	Trapping of H <scp>ii</scp> regions in Population III star formation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 116-136.	1.6	16
12	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and Hα Emission for 49 PHANGS Galaxies. Astrophysical Journal, 2022, 927, 9.	1.6	19
13	Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA. Astrophysical Journal, 2022, 927, 149.	1.6	46
14	Self-consistent modelling of the Milky Way's nuclear stellar disc. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1857-1884.	1.6	26
15	Origin of supermassive black holes in massive metal-poor protoclusters. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6192-6200.	1.6	13
16	Tracing stars in Milky Way satellites with <scp>a-sloth</scp> . Monthly Notices of the Royal Astronomical Society, 2022, 513, 934-950.	1.6	10
17	Is the molecular KS relationship universal down to low metallicities?. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4146-4165.	1.6	5
18	Fragmentation-induced starvation in Population III star formation: a resolution study. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4019-4030.	1.6	17

#	Article	IF	CITATIONS
19	Metal Mixing in Minihalos: The Descendants of Pair-instability Supernovae. Astrophysical Journal, 2022, 929, 119.	1.6	12
20	Gangotri Wave—A High Density Gas Ripple in the Inner Galaxy. Research Notes of the AAS, 2022, 6, 85.	0.3	0
21	The physical origin and the properties of arm spurs/feathers in local simulations of the wiggle instability. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5052-5075.	1.6	6
22	The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission. Astronomy and Astrophysics, 2022, 662, A96.	2.1	15
23	Linking stellar populations to H II regions across nearby galaxies. Astronomy and Astrophysics, 2022, 662, L6.	2.1	11
24	Effect of the cosmological transition to metal-enriched star formation on the hydrogen 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4433-4449.	1.6	18
25	The signature of large-scale turbulence driving on the structure of the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3670-3684.	1.6	7
26	Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective. Astronomical Journal, 2022, 164, 43.	1.9	31
27	Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3621-3639.	1.6	106
28	Star cluster classification in the PHANGS– <i>HST</i> survey: Comparison between human and machine learning approaches. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5294-5317.	1.6	28
29	The sonic scale of interstellar turbulence. Nature Astronomy, 2021, 5, 365-371.	4.2	73
30	Fiery Cores: Bursty and Smooth Star Formation Distributions across Galaxy Centers in Cosmological Zoom-in Simulations. Astrophysical Journal Letters, 2021, 908, L31.	3.0	9
31	Filament Rotation in the California L1482 Cloud. Astrophysical Journal, 2021, 908, 86.	1.6	13
32	The CARMA-NRO Orion Survey—Data Release. Research Notes of the AAS, 2021, 5, 55.	0.3	2
33	On the duration of the embedded phase of star formation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 487-509.	1.6	61
34	The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses?. Astrophysical Journal Letters, 2021, 910, L6.	3.0	15
35	SILCC VI – Multiphase ISM structure, stellar clustering, and outflows with supernovae, stellar winds, ionizing radiation, and cosmic rays. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1039-1061.	1.6	61
36	Applying the Tremaine–Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics. Astronomical Journal, 2021, 161, 185.	1.9	23

#	Article	IF	CITATIONS
37	A multishock model for the density variance of anisotropic, highly magnetized, supersonic turbulence. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4354-4368.	1.6	17
38	High-resolution CARMA Observation of Molecular Gas in the North America and Pelican Nebulae. Astronomical Journal, 2021, 161, 229.	1.9	2
39	FirstLight IV: diversity in sub-L* galaxies at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4472-4480.	1.6	4
40	Measuring Young Stars in Space and Time. I. The Photometric Catalog and Extinction Properties of N44. Astronomical Journal, 2021, 161, 256.	1.9	2
41	Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44. Astronomical Journal, 2021, 161, 257.	1.9	6
42	Stellar collisions in flattened and rotating Population III star clusters. Astronomy and Astrophysics, 2021, 649, A160.	2.1	14
43	Density profile of a self-gravitating polytropic turbulent fluid in the context of ensembles of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3655-3663.	1.6	6
44	The Organization of Cloud-scale Gas Density Structure: High-resolution CO versus 3.6 μm Brightness Contrasts in Nearby Galaxies. Astrophysical Journal, 2021, 913, 113.	1.6	10
45	Dense molecular gas properties on 100Âpc scales across the disc of NGCÂ3627. Monthly Notices of the Royal Astronomical Society, 2021, 506, 963-988.	1.6	24
46	Simulations of the star-forming molecular gas in an interacting M51-like galaxy: cloud population statistics. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5438-5459.	1.6	14
47	The filamentary structures in the CO emission toward the Milky Way disk. Astronomy and Astrophysics, 2021, 651, L4.	2.1	6
48	The influence of streaming velocities and Lyman–Werner radiation on the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1775-1787.	1.6	39
49	PHANGS–ALMA Data Processing and Pipeline. Astrophysical Journal, Supplement Series, 2021, 255, 19.	3.0	79
50	Maximum accretion rate of supermassive stars. Astronomy and Astrophysics, 2021, 652, L7.	2.1	9
51	Protoplanetary Disk Birth in Massive Star-forming Clumps: The Essential Role of the Magnetic Field. Astrophysical Journal Letters, 2021, 917, L10.	3.0	28
52	Turbulence and its connection to episodic accretion in binary YSOs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 6061-6077.	1.6	3
53	Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies. Astronomy and Astrophysics, 2021, 656, A133.	2.1	53
54	Are hierarchically formed embedded star clusters surviving gas expulsion depending on their initial conditions?. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5410-5424.	1.6	3

#	Article	IF	CITATIONS
55	The CARMA-NRO Orion Survey: Filament Formation via Collision-induced Magnetic Reconnection—the Stick in Orion A. Astrophysical Journal, 2021, 906, 80.	1.6	6
56	PHANGS– <i>HST</i> : star cluster spectral energy distribution fitting with <scp>cigale</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 502, 1366-1385.	1.6	33
57	Stellar initial mass function over a range of redshifts. Astronomische Nachrichten, 2021, 342, 157-163.	0.6	2
58	Giant molecular cloud catalogues for PHANGS-ALMA: methods and initial results. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1218-1245.	1.6	75
59	The 2D metallicity distribution and mixing scales of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1303-1322.	1.6	22
60	Comparing the pre-SNe feedback and environmental pressures for 6000 H <scp>ii</scp> regions across 19 nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5362-5389.	1.6	27
61	Bringing faint active galactic nuclei (AGNs) to light: a view from large-scale cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4816-4843.	1.6	8
62	Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 272-288.	1.6	65
63	A Kiloparsec-scale Molecular Wave in the Inner Galaxy: Feather of the Milky Way?. Astrophysical Journal Letters, 2021, 921, L42.	3.0	9
64	Globular Clusters and Streaming Velocities: Testing the New Formation Channel in High-resolution Cosmological Simulations. Astrophysical Journal, 2021, 922, 193.	1.6	8
65	PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2021, 257, 43.	3.0	161
66	Bright, relatively isolated star clusters in PHANGS– <i>HST</i> galaxies: Aperture corrections, quantitative morphologies, and comparison with synthetic stellar population models. Monthly Notices of the Royal Astronomical Society, 2021, 510, 32-53.	1.6	16
67	Dynamically Driven Inflow onto the Galactic Center and its Effect upon Molecular Clouds. Astrophysical Journal, 2021, 922, 79.	1.6	16
68	PHANGS-HST: new methods for star cluster identification in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4094-4127.	1.6	25
69	The mean free path approximation and stellar collisions in star clusters: numerical exploration of the analytic rates and the role of perturbations on binary star mergers. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3724-3736.	1.6	5
70	When H iiÂregions are complicated: considering perturbations from winds, radiation pressure, and other effects. Monthly Notices of the Royal Astronomical Society, 2020, 492, 915-933.	1.6	26
71	The Cloud Factory I: Generating resolved filamentary molecular clouds from galactic-scale forces. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1594-1613.	1.6	67
72	Detecting strongly lensed supernovae at z â^1⁄4 5–7 with LSST. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2447-2459.	1.6	14

#	Article	IF	CITATIONS
73	Measuring the mixing scale of the ISM within nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 193-209.	1.6	44
74	warpfield population synthesis: the physics of (extra-)Galactic star formation and feedback-driven cloud structure and emission from sub-to-kpc scales. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3193-3214.	1.6	21
75	Jeans modelling of the Milky Way's nuclear stellar disc. Monthly Notices of the Royal Astronomical Society, 2020, 499, 7-24.	1.6	22
76	Shape and spin of minihaloes – II. The effect of streaming velocities. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4839-4852.	1.6	7
77	From parallel to perpendicular – On the orientation of magnetic fields in molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4196-4212.	1.6	45
78	A systematic study of radiative torque grain alignment in the diffuse interstellar medium. Astronomy and Astrophysics, 2020, 640, A118.	2.1	14
79	SPRAI-II: multifrequency radiative transfer for variable gas densities. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3594-3609.	1.6	6
80	Simulations of the Milky Way's Central Molecular Zone – II. Star formation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5024-5040.	1.6	48
81	Physical Processes in Star Formation. Space Science Reviews, 2020, 216, 1.	3.7	43
82	The Molecular Cloud Lifecycle. Space Science Reviews, 2020, 216, 50.	3.7	77
83	From Diffuse Gas to Dense Molecular Cloud Cores. Space Science Reviews, 2020, 216, 1.	3.7	38
84	Do fragmentation and accretion affect the stellar initial mass function?. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1647-1657.	1.6	5
85	WARPFIELD-EMP: The self-consistent prediction of emission lines from evolving H ii regions in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 496, 339-363.	1.6	29
86	Ubiquitous velocity fluctuations throughout the molecular interstellar medium. Nature Astronomy, 2020, 4, 1064-1071.	4.2	38
87	Formation sites of PopulationÂlll star formation: The effects of different levels of rotation and turbulence on the fragmentation behaviour of primordial gas. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1871-1893.	1.6	52
88	Statistical mass function of prestellar cores from the density distribution of their natal clouds. Astronomy and Astrophysics, 2020, 635, A88.	2.1	0
89	Simulations of the star-forming molecular gas in an interacting M51-like galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2973-2995.	1.6	51
90	Formation of the First Stars and Black Holes. Space Science Reviews, 2020, 216, 1.	3.7	39

#	Article	IF	CITATIONS
91	Formation of SMBH seeds in Population III star clusters through collisions: the importance of mass loss. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2352-2362.	1.6	21
92	The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and H I overview. Astronomy and Astrophysics, 2020, 634, A83.	2.1	52
93	Synthetic observations of spiral arm tracers of a simulated Milky Way analog. Astronomy and Astrophysics, 2020, 642, A201.	2.1	9
94	The effects of a background potential in star cluster evolution. Astronomy and Astrophysics, 2020, 639, A92.	2.1	13
95	Mono-enriched stars and Galactic chemical evolution. Astronomy and Astrophysics, 2020, 643, A49.	2.1	15
96	The history of dynamics and stellar feedback revealed by the Hâ€I filamentary structure in the disk of the Milky Way. Astronomy and Astrophysics, 2020, 642, A163.	2.1	29
97	Stellar parameter determination from photometry using invertible neural networks. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5447-5485.	1.6	16
98	Simulations of the Milky Way's central molecular zone – I. Gas dynamics. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4455-4478.	1.6	57
99	Magnetic fields in star-forming systems – II: Examining dust polarization, the Zeeman effect, and the Faraday rotation measure as magnetic field tracers. Monthly Notices of the Royal Astronomical Society, 2020, 500, 153-176.	1.6	8
100	The Cloud Factory II: gravoturbulent kinematics of resolved molecular clouds in a galactic potential. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5268-5296.	1.6	9
101	Time-variable Radio Recombination Line Emission in W49A. Astronomical Journal, 2020, 160, 234.	1.9	7
102	A SOFIA Survey of [C ii] in the Galaxy M51. II. [C ii] and CO Kinematics across the Spiral Arms. Astrophysical Journal, 2020, 900, 132.	1.6	6
103	Modeling of the Effects of Stellar Feedback during Star Cluster Formation Using a Hybrid Gas and N-Body Method. Astrophysical Journal, 2020, 904, 192.	1.6	26
104	Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population. Astrophysical Journal Letters, 2020, 901, L8.	3.0	85
105	Atomic and molecular gas properties during cloud formation. Astronomy and Astrophysics, 2020, 642, A68.	2.1	10
106	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	114
107	The relation between the true and observed fractal dimensions of turbulent clouds. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2070-2081.	1.6	13
108	On the extraction of the power-law parts of probability density functions in star-forming clouds. Monthly Notices of the Royal Astronomical Society, 2019, 489, 788-801.	1.6	15

#	Article	IF	CITATIONS
109	SIGNALS: I. Survey description. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5530-5546.	1.6	30
110	The geometry of the gas surrounding the Central Molecular Zone: on the origin of localized molecular clouds with extreme velocity dispersions. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4663-4673.	1.6	28
111	The CARMA-NRO Orion Survey: Core Emergence and Kinematics in the Orion A Cloud. Astrophysical Journal, 2019, 882, 45.	1.6	6
112	The relation between the turbulent Mach number and observed fractal dimensions of turbulent clouds. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2493-2502.	1.6	20
113	<scp>warpfield</scp> 2.0: feedback-regulated minimum star formation efficiencies of giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2547-2560.	1.6	52
114	The CARMA-NRO Orion Survey. Astronomy and Astrophysics, 2019, 623, A142.	2.1	45
115	Observational constraints on the survival of pristine stars. Monthly Notices of the Royal Astronomical Society, 2019, 487, 486-490.	1.6	28
116	The influence of streaming velocities on the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3510-3521.	1.6	64
117	FirstLight III: rest-frame UV-optical spectral energy distributions of simulated galaxies at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1366-1377.	1.6	26
118	Feedback in W49A diagnosed with radio recombination lines and models. Astronomy and Astrophysics, 2019, 622, A48.	2.1	20
119	Histogram of oriented gradients: a technique for the study of molecular cloud formation. Astronomy and Astrophysics, 2019, 622, A166.	2.1	30
120	Strong Excess Faraday Rotation on the Inside of the Sagittarius Spiral Arm. Astrophysical Journal Letters, 2019, 887, L7.	3.0	24
121	Maximally accreting supermassive stars: a fundamental limit imposed by hydrostatic equilibrium. Astronomy and Astrophysics, 2019, 632, L2.	2.1	23
122	Fingerprint of the first stars: multi-enriched extremely metal-poor stars in the TOPoS survey. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1204-1210.	1.6	24
123	Formation of the first stars. , 2019, , 67-97.		19
124	Radiative Transfer with POLARIS. II. Modeling of Synthetic Galactic Synchrotron Observations. Astrophysical Journal, 2019, 885, 15.	1.6	20
125	Relations between Molecular Cloud Structure Sizes and Line Widths in the Large Magellanic Cloud. Astrophysical Journal, 2019, 885, 50.	1.6	24
126	Collisional N-body Dynamics Coupled to Self-gravitating Magnetohydrodynamics Reveals Dynamical Binary Formation. Astrophysical Journal, 2019, 887, 62.	1.6	27

#	Article	IF	CITATIONS
127	Spatially associated clump populations in Rosette from CO and dust maps. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2215-2235.	1.6	10
128	Simulating the UV escape fractions from molecular cloud populations in star-forming dwarf and spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3121-3134.	1.6	24
129	A theoretical explanation for the Central Molecular Zone asymmetry. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2383-2402.	1.6	64
130	sprai: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2822-2834.	1.6	13
131	On the Rotation of Supermassive Stars. Astrophysical Journal Letters, 2018, 853, L3.	3.0	40
132	Formation of massive seed black holes via collisions and accretion. Monthly Notices of the Royal Astronomical Society, 2018, 476, 366-380.	1.6	59
133	The evolution of supermassive Population III stars. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2757-2773.	1.6	98
134	Flux Density Variations at 3.6 cm in the Massive Star-forming Region W49A. Astrophysical Journal Letters, 2018, 863, L9.	3.0	4
135	A dynamical mechanism for the origin of nuclear rings. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2-19.	1.6	38
136	The SILCC project – V. The impact of magnetic fields on the chemistry and the formation of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3511-3540.	1.6	42
137	Magnetic fields in star-forming systems (I): idealized synthetic signatures of dust polarization and Zeeman splitting in filaments. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2507-2522.	1.6	21
138	A SOFIA Survey of [C ii] in the Galaxy M51. I. [C ii] as a Tracer of Star Formation. Astrophysical Journal Letters, 2018, 869, L30.	3.0	14
139	Shape and spin of minihaloes: from large scales to the centres. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3266-3277.	1.6	6
140	On the indeterministic nature of star formation on the cloud scale. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2548-2569.	1.6	46
141	Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5308-5323.	1.6	47
142	The CARMA-NRO Orion Survey. Astrophysical Journal, Supplement Series, 2018, 236, 25.	3.0	64
143	Collisions in primordial star clusters. Astronomy and Astrophysics, 2018, 614, A14.	2.1	55
144	Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust. Astronomy and Astrophysics, 2018, 611, A70.	2.1	25

#	Article	IF	CITATIONS
145	Descendants of the first stars: the distinct chemical signature of second-generation stars. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1795-1810.	1.6	77
146	Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey. Astronomy and Astrophysics, 2018, 619, A124.	2.1	32
147	The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4322-4342.	1.6	13
148	Using CO line ratios to trace the physical properties of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2277-2285.	1.6	36
149	Massive star formation by accretion. Astronomy and Astrophysics, 2017, 602, A17.	2.1	16
150	ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION. Astrophysical Journal, 2017, 834, 40.	1.6	16
151	On the Maximum Mass of Accreting Primordial Supermassive Stars. Astrophysical Journal Letters, 2017, 842, L6.	3.0	89
152	Galactic supernova remnant candidates discovered by THOR. Astronomy and Astrophysics, 2017, 605, A58.	2.1	63
153	Nuclear spirals in the inner Milky Way. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2251-2262.	1.6	40
154	How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae. Astrophysical Journal, 2017, 844, 111.	1.6	25
155	The origin of dust polarization in molecular outflows. Astronomy and Astrophysics, 2017, 603, A71.	2.1	24
156	Feeding versus Falling: The Growth and Collapse of Molecular Clouds in a Turbulent Interstellar Medium. Astrophysical Journal, 2017, 850, 62.	1.6	32
157	Statistical link between the structure of molecular clouds and their density distribution. Monthly Notices of the Royal Astronomical Society, 2017, 466, 914-920.	1.6	14
158	A simple method to convert sink particles into stars. Monthly Notices of the Royal Astronomical Society, 2017, 466, 407-412.	1.6	42
159	The SILCC project – III. Regulation of star formation and outflows by stellar winds and supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1903-1924.	1.6	149
160	The SILCC project – IV. Impact of dissociating and ionizing radiation on the interstellar medium and Hα emission as a tracer of the star formation rate. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3293-3308.	1.6	86
161	Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2791-2798.	1.6	52
162	Winds and radiation in unison: a new semi-analytic feedback model for cloud dissolution. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4453-4472.	1.6	102

#	Article	IF	CITATIONS
163	Hierarchical star formation across the grand-design spiral NGCÂ1566. Monthly Notices of the Royal Astronomical Society, 2017, 468, 509-530.	1.6	32
164	Tracing star formation with non-thermal radio emission. Monthly Notices of the Royal Astronomical Society, 2017, 468, 946-958.	1.6	16
165	Adaptive mesh refinement simulations of a galaxy cluster merger – I. Resolving and modelling the turbulent flow in the cluster outskirts. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3641-3655.	1.6	21
166	Periodicity makes galactic shocks unstable – I. Linear analysis. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2932-2951.	1.6	17
167	An analytic resolution to the competition between Lyman–Werner radiation and metal winds in direct collapse black hole hosts. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4034-4038.	1.6	10
168	The formation of direct collapse black holes under the influence of streaming velocities. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4878-4884.	1.6	70
169	New ALMA constraints on the star-forming interstellar medium at low metallicity: a 50Âpc view of the blue compact dwarf galaxy SBSÂ0335â~'052. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L87-L91.	1.2	12
170	SILCC-Zoom: the dynamic and chemical evolution of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4797-4818.	1.6	89
171	Effects of binary stellar populations on direct collapse black hole formation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L82-L86.	1.2	6
172	The impact of magnetic fields on the chemical evolution of the supernova-driven ISM. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4611-4633.	1.6	12
173	Metallicity evolution of direct collapse black hole hosts: CR7 as a case study. Monthly Notices of the Royal Astronomical Society, 2017, 469, 231-236.	1.6	13
174	Lyman–Werner escape fractions from the first galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2288-2300.	1.6	29
175	GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS. Astrophysical Journal, 2016, 824, 41.	1.6	74
176	The HI/OH/Recombination line survey of the inner Milky Way (THOR). Astronomy and Astrophysics, 2016, 595, A32.	2.1	118
177	The reliability of observational measurements of column density probability distribution functions. Astronomy and Astrophysics, 2016, 590, A104.	2.1	29
178	Understanding star formation in molecular clouds. Astronomy and Astrophysics, 2016, 587, A74.	2.1	52
179	Gravitational waves from the remnants of the first stars. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L74-L78.	1.2	118
180	Synthetic observations of molecular clouds in a galactic centre environment – I. Studying maps of column density and integrated intensity. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3763-3778.	1.6	16

#	Article	IF	CITATIONS
181	Modelling the structure of molecular clouds – I. A multiscale energy equipartition. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2432-2443.	1.6	10
182	Exploring the nature of the Lyman- $\hat{l}\pm$ emitter CR7. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2184-2202.	1.6	38
183	A new statistical model for Population III supernova rates: discriminating between ĥCDM and WDM cosmologies. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3591-3601.	1.6	35
184	MODELING DUST EVOLUTION IN GALAXIES WITH A MULTIPHASE, INHOMOGENEOUS ISM. Astrophysical Journal, 2016, 831, 147.	1.6	115
185	Mach number study of supersonic turbulence: the properties of the density field. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4483-4491.	1.6	26
186	The IMF as a function of supersonic turbulence. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4171-4182.	1.6	23
187	GALACTIC SYNCHROTRON EMISSION AND THE FAR-INFRARED–RADIO CORRELATION AT HIGH REDSHIFT. Astrophysical Journal, 2016, 827, 109.	1.6	24
188	The SILCC (SImulating the LifeCycle of molecular Clouds) project – II. Dynamical evolution of the supernova-driven ISM and the launching of outflows. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3432-3455.	1.6	166
189	How well does CO emission measure the H _{2} mass of MCs?. Monthly Notices of the Royal Astronomical Society, 2016, 460, 82-102.	1.6	33
190	A survey for hydroxyl in the THOR pilot region around W43. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3494-3510.	1.6	16
191	On the nature of star-forming filaments – II. Subfilaments and velocities. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3640-3655.	1.6	96
192	Simultaneously modelling far-infrared dust emission and its relation to CO emission in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 460, 67-81.	1.6	5
193	LAUNCHING COSMIC-RAY-DRIVEN OUTFLOWS FROM THE MAGNETIZED INTERSTELLAR MEDIUM. Astrophysical Journal Letters, 2016, 816, L19.	3.0	163
194	Radial gas motions in The H i Nearby Galaxy Survey (THINGS). Monthly Notices of the Royal Astronomical Society, 2016, 457, 2642-2664.	1.6	39
195	DISTRIBUTION AND MASS OF DIFFUSE AND DENSE CO GAS IN THE MILKY WAY. Astrophysical Journal, 2016, 818, 144.	1.6	62
196	Physical Processes in the Interstellar Medium. Saas-Fee Advanced Course, 2016, , 85-249.	1.1	126
197	Continuum sources from the THOR survey between 1 and 2 GHz. Astronomy and Astrophysics, 2016, 588, A97.	2.1	41
198	Saturation of the turbulent dynamo. Physical Review E, 2015, 92, 023010.	0.8	55

#	Article	IF	CITATIONS
199	IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS. Astrophysical Journal Letters, 2015, 813, L27.	3.0	20
200	EVIDENCE OF SHORT TIMESCALE FLUX DENSITY VARIATIONS OF UC H II REGIONS IN SGR B2 MAIN AND NORTH. Astrophysical Journal, 2015, 815, 123.	1.6	29
201	THOR: The H i, OH, Recombination line survey of the Milky Way. Astronomy and Astrophysics, 2015, 580, A112.	2.1	51
202	The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM. Monthly Notices of the Royal Astronomical Society, 2015, 454, 246-276.	1.6	255
203	Understanding star formation in molecular clouds. Astronomy and Astrophysics, 2015, 578, A29.	2.1	70
204	Understanding star formation in molecular clouds. Astronomy and Astrophysics, 2015, 575, A79.	2.1	91
205	TOPoS. Astronomy and Astrophysics, 2015, 579, A28.	2.1	141
206	Star formation rates from young-star counts and the structure of the ISM across the NGC 346/N66 complex in the SMCa~ Monthly Notices of the Royal Astronomical Society, 2015, 448, 1847-1862.	1.6	40
207	The role of three-body H2 formation in the fragmentation of primordial gas. Monthly Notices of the Royal Astronomical Society, 2015, 450, 202-208.	1.6	9
208	Star formation efficiencies of molecular clouds in a galactic centre environment. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3679-3692.	1.6	21
209	Modelling the supernova-driven ISM in different environments. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1057-1075.	1.6	128
210	Structure analysis of simulated molecular clouds with the Δ-variance. Monthly Notices of the Royal Astronomical Society, 2015, 451, 196-209.	1.6	9
211	<tt>Fervent</tt> : chemistry-coupled, ionizing and non-ionizing radiative feedback in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 380-411.	1.6	39
212	Lyman–Werner UV escape fractions from primordial haloes. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2441-2450.	1.6	40
213	A NEW APPROACH TO DETERMINE OPTICALLY THICK H ₂ COOLING AND ITS EFFECT ON PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2015, 799, 114.	1.6	25
214	Hierarchical Bayesian analysis of the velocity power spectrum in supersonic turbulence. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1775-1783.	1.6	9
215	How an improved implementation of H ₂ self-shielding influences the formation of massive stars and black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1233-1244.	1.6	42
216	Accretion and magnetic field morphology around Class 0 stage protostellar discs. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2776-2788.	1.6	40

#	Article	IF	CITATIONS
217	Constraining the primordial initial mass function with stellar archaeology. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3892-3908.	1.6	81
218	Tracing the general structure of Galactic molecular clouds using Planck data – I. The Perseus region as a test case. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1056-1069.	1.6	8
219	Detection of two power-law tails in the probability distribution functions of massive GMCs. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L41-L45.	1.2	66
220	Centroid velocity statistics of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3777-3787.	1.6	13
221	X-ray emission from star-forming galaxies – signatures of cosmic rays and magnetic fields. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2-17.	1.6	11
222	Indications of a sub-linear and non-universal Kennicutt-Schmidt relationship. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 437, L61-L65.	1.2	39
223	Statistical properties of dark matter mini-haloes at zÂ≥ 15. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1942-1955.	1.6	15
224	The complex distribution of recently formed stars. Bimodal stellar clustering in the star-forming region NGCÂ346. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3775-3789.	1.6	58
225	The 12CO/13CO ratio in turbulent molecular clouds. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4055-4072.	1.6	53
226	On the nature of star-forming filaments – I. Filament morphologies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2900-2917.	1.6	137
227	Interpreting the sub-linear Kennicutt–Schmidt relationship: the case for diffuse molecular gas. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2208-2215.	1.6	30
228	Morphologies of protostellar outflows: an ALMA view. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2901-2908.	1.6	6
229	THE CO-TO-H ₂ CONVERSION FACTOR ACROSS THE PERSEUS MOLECULAR CLOUD. Astrophysical Journal, 2014, 784, 80.	1.6	47
230	COLLECTIVE OUTFLOW FROM A SMALL MULTIPLE STELLAR SYSTEM. Astrophysical Journal, 2014, 788, 14.	1.6	35
231	FLICKERING OF 1.3 cm SOURCES IN SGR B2: TOWARD A SOLUTION TO THE ULTRACOMPACT H II REGION LIFETIME PROBLEM. Astrophysical Journal Letters, 2014, 781, L36.	3.0	40
232	Low-metallicity star formation: relative impact of metals and magnetic fields. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3112-3126.	1.6	21
233	Principal component analysis of molecular clouds: can CO reveal the dynamics?. Monthly Notices of the Royal Astronomical Society, 2014, 440, 465-475.	1.6	12
234	MODELING JET AND OUTFLOW FEEDBACK DURING STAR CLUSTER FORMATION. Astrophysical Journal, 2014, 790, 128.	1.6	139

#	Article	IF	CITATIONS
235	Line profiles of cores within clusters – III. What is the most reliable tracer of core collapse in dense clusters?. Monthly Notices of the Royal Astronomical Society, 2014, 444, 874-886.	1.6	23
236	ON THE EVOLUTION OF THE DENSITY PROBABILITY DENSITY FUNCTION IN STRONGLY SELF-GRAVITATING SYSTEMS. Astrophysical Journal, 2014, 781, 91.	1.6	128
237	CO-dark gas and molecular filaments in Milky Way-type galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1628-1645.	1.6	153
238	Hierarchically Clustered Star Formation in the Magellanic Clouds. Thirty Years of Astronomical Discovery With UKIRT, 2014, , 447-451.	0.3	3
239	Rotation and internal structure of Population III protostars. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1470-1486.	1.6	54
240	Clump mass function at an early stage of molecular cloud evolution – II. Galactic cloud complexes. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3495-3507.	1.6	7
241	Turbulence-induced disc formation in strongly magnetized cloud cores. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3320-3331.	1.6	95
242	LINE PROFILES OF CORES WITHIN CLUSTERS. II. SIGNATURES OF DYNAMICAL COLLAPSE DURING HIGH-MASS STAR FORMATION. Astrophysical Journal, 2013, 771, 24.	1.6	57
243	Cloud formation in colliding flows: influence of the choice of cooling function. Monthly Notices of the Royal Astronomical Society, 2013, 432, 626-636.	1.6	25
244	ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING. Astrophysical Journal, 2013, 766, 103.	1.6	110
245	ON THE TEMPERATURE STRUCTURE OF THE GALACTIC CENTER CLOUD G0.253+0.016. Astrophysical Journal Letters, 2013, 768, L34.	3.0	55
246	The reliability of approximate radiation transport methods for irradiated disk studies. Astronomy and Astrophysics, 2013, 555, A7.	2.1	31
247	Magnetic field amplification in young galaxies. Astronomy and Astrophysics, 2013, 560, A87.	2.1	61
248	ON THE STAR FORMATION EFFICIENCY OF TURBULENT MAGNETIZED CLOUDS. Astrophysical Journal, 2013, 763, 51.	1.6	295
249	THE IMPACT OF THERMODYNAMICS ON GRAVITATIONAL COLLAPSE: FILAMENT FORMATION AND MAGNETIC FIELD AMPLIFICATION. Astrophysical Journal Letters, 2012, 760, L28.	3.0	27
250	Small-scale dynamo at low magnetic Prandtl numbers. Physical Review E, 2012, 86, 066412.	0.8	32
251	Magnetic field amplification by small-scale dynamo action: Dependence on turbulence models and Reynolds and Prandtl numbers. Physical Review E, 2012, 85, 026303.	0.8	78
252	ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?. Astrophysical Journal, 2012, 760, 91.	1.6	19

#	Article	IF	CITATIONS
253	THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS. Astrophysical Journal, 2012, 761, 156.	1.6	553
254	WEAKLY INTERACTING MASSIVE PARTICLE DARK MATTER AND FIRST STARS: SUPPRESSION OF FRAGMENTATION IN PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2012, 761, 154.	1.6	30
255	A NEW DENSITY VARIANCE–MACH NUMBER RELATION FOR SUBSONIC AND SUPERSONIC ISOTHERMAL TURBULENCE. Astrophysical Journal, 2012, 761, 149.	1.6	92
256	Small-scale dynamo action in primordial halos. Proceedings of the International Astronomical Union, 2012, 8, 237-248.	0.0	0
257	THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK. Astrophysical Journal, 2012, 754, 34.	1.6	100
258	LINE PROFILES OF CORES WITHIN CLUSTERS. I. THE ANATOMY OF A FILAMENT. Astrophysical Journal, 2012, 750, 64.	1.6	48
259	Statistical properties of supersonic turbulence in the Lagrangian and Eulerian frameworks. Journal of Fluid Mechanics, 2012, 692, 183-206.	1.4	49
260	THE SMALL-SCALE DYNAMO AND NON-IDEAL MAGNETOHYDRODYNAMICS IN PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2012, 754, 99.	1.6	119
261	Importance of the initial conditions for star formation - II. Fragmentation-induced starvation and accretion shielding. Monthly Notices of the Royal Astronomical Society, 2012, 420, 613-626.	1.6	65
262	TreeCol: a novel approach to estimating column densities in astrophysical simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 745-756.	1.6	123
263	Importance of the initial conditions for star formation - III. Statistical properties of embedded protostellar clusters. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3264-3280.	1.6	78
264	Statistical analysis of the mass-to-flux ratio in turbulent cores: effects of magnetic field reversals and dynamo amplification. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	4
265	Disc formation in turbulent massive cores: circumventing the magnetic braking catastrophe. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L40-L44.	1.2	95
266	Modelling H2 formation in the turbulent interstellar medium: solenoidal versus compressive turbulent forcing. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2531-2542.	1.6	47
267	On the formation of very metal poor stars: the case of SDSS J1029151+172927. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3217-3221.	1.6	46
268	Magnetic fields during the early stages of massive star formation - II. A generalized outflow criterion. Monthly Notices of the Royal Astronomical Society, 2012, 422, 347-366.	1.6	82
269	Clump mass function at an early stage of molecular cloud evolution - I. A statistical approach. Monthly Notices of the Royal Astronomical Society, 2012, 423, 889-899.	1.6	12
270	The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2680-2689.	1.6	179

#	Article	IF	CITATIONS
271	Magnetic field amplification during gravitational collapse - influence of turbulence, rotation and gravitational compression. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3148-3162.	1.6	68
272	Variable accretion rates and fluffy first stars. Monthly Notices of the Royal Astronomical Society, 2012, 424, 457-463.	1.6	47
273	Formation and evolution of primordial protostellar systems. Monthly Notices of the Royal Astronomical Society, 2012, 424, 399-415.	1.6	271
274	How long does it take to form a molecular cloud?. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2599-2613.	1.6	107
275	The linewidth-size relationship in the dense interstellar medium of the Central Molecular Zone. Monthly Notices of the Royal Astronomical Society, 2012, 425, 720-729.	1.6	115
276	The Formation and Fragmentation of Disks Around Primordial Protostars. Science, 2011, 331, 1040-1042.	6.0	320
277	THE DELAY OF POPULATION III STAR FORMATION BY SUPERSONIC STREAMING VELOCITIES. Astrophysical Journal, 2011, 736, 147.	1.6	129
278	THE EFFECT OF DUST COOLING ON LOW-METALLICITY STAR-FORMING CLOUDS. Astrophysical Journal Letters, 2011, 729, L3.	3.0	70
279	THE TURBULENCE SPECTRUM OF MOLECULAR CLOUDS IN THE GALACTIC RING SURVEY: A DENSITY-DEPENDENT PRINCIPAL COMPONENT ANALYSIS CALIBRATION. Astrophysical Journal, 2011, 740, 120.	1.6	89
280	EFFECTS OF VARYING THE THREE-BODY MOLECULAR HYDROGEN FORMATION RATE IN PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2011, 726, 55.	1.6	58
281	THE INTERPLAY OF MAGNETIC FIELDS, FRAGMENTATION, AND IONIZATION FEEDBACK IN HIGH-MASS STAR FORMATION. Astrophysical Journal, 2011, 729, 72.	1.6	167
282	The link between molecular cloud structure and turbulence. Astronomy and Astrophysics, 2011, 529, A1.	2.1	92
283	Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores. Astronomy and Astrophysics, 2011, 528, A72.	2.1	156
284	Stellar and substellar initial mass function: a model that implements gravoturbulent fragmentation and accretion. Monthly Notices of the Royal Astronomical Society, 2011, 411, 301-310.	1.6	21
285	A quantification of the non-spherical geometry and accretion of collapsing cores. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1354-1366.	1.6	33
286	Protostellar collapse and fragmentation using an MHD gadget. Monthly Notices of the Royal Astronomical Society, 2011, 412, 171-186.	1.6	34
287	Modelling CO emission - I. CO as a column density tracer and the X factor in molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1686-1700.	1.6	184
288	The role of stellar collisions for the formation of massive stars. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1810-1818.	1.6	27

#	Article	IF	CITATIONS
289	Importance of the initial conditions for star formation - I. Cloud evolution and morphology. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2741-2759.	1.6	153
290	Molecular cloud evolution - IV. Magnetic fields, ambipolar diffusion and the star formation efficiency. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2511-2527.	1.6	127
291	The effects of accretion luminosity upon fragmentation in the early universe. Monthly Notices of the Royal Astronomical Society, 2011, 414, 3633-3644.	1.6	98
292	Time variability in simulated ultracompact and hypercompact H ii regions. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1033-1044.	1.6	38
293	Magnetic fields during the early stages of massive star formation - I. Accretion and disc evolution. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1054-1073.	1.6	110
294	Mass-density relationship in molecular cloud clumps. Monthly Notices of the Royal Astronomical Society, 2011, 418, 916-928.	1.6	12
295	Protostellar outflows with smoothed particle magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 417, L61-L65.	1.2	21
296	Modelling CO emission - II. The physical characteristics that determine theâ€,Xâ€,factor in Galactic molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3253-3274.	1.6	129
297	Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows. Physical Review Letters, 2011, 107, 114504.	2.9	194
298	GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS. Astrophysical Journal, 2011, 727, 110.	1.6	240
299	SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS. Astrophysical Journal, 2011, 737, 75.	1.6	375
300	A NEW JEANS RESOLUTION CRITERION FOR (M)HD SIMULATIONS OF SELF-GRAVITATING GAS: APPLICATION TO MAGNETIC FIELD AMPLIFICATION BY GRAVITY-DRIVEN TURBULENCE. Astrophysical Journal, 2011, 731, 62.	1.6	274
301	Numerical Star-Formation Studies— A Status Report. Advanced Science Letters, 2011, 4, 258-285.	0.2	18
302	Modeling High-Mass Star Formation and Ultracompact H ii Regions. Proceedings of the International Astronomical Union, 2010, 6, 107-114.	0.0	2
303	Implementing and comparing sink particles in AMR and SPH. Proceedings of the International Astronomical Union, 2010, 6, 425-428.	0.0	4
304	THE FIRST GALAXIES: CHEMICAL ENRICHMENT, MIXING, AND STAR FORMATION. Astrophysical Journal, 2010, 716, 510-520.	1.6	208
305	H II REGIONS: WITNESSES TO MASSIVE STAR FORMATION. Astrophysical Journal, 2010, 711, 1017-1028.	1.6	213
306	Comparing the statistics of interstellar turbulence in simulations and observations. Astronomy and Astrophysics, 2010, 512, A81.	2.1	631

#	Article	IF	CITATIONS
307	Small-scale dynamo action during the formation of the first stars and galaxies. Astronomy and Astrophysics, 2010, 522, A115.	2.1	150
308	UNDERSTANDING SPATIAL AND SPECTRAL MORPHOLOGIES OF ULTRACOMPACT H II REGIONS. Astrophysical Journal, 2010, 719, 831-843.	1.6	103
309	The Effects of Accretion Luminosity on the Environment of the First Stars. , 2010, , .		1
310	MODELING COLLAPSE AND ACCRETION IN TURBULENT GAS CLOUDS: IMPLEMENTATION AND COMPARISON OF SINK PARTICLES IN AMR AND SPH. Astrophysical Journal, 2010, 713, 269-290.	1.6	335
311	HIERARCHICAL STELLAR STRUCTURES IN THE LOCAL GROUP DWARF GALAXY NGC 6822. Astrophysical Journal, 2010, 725, 1717-1734.	1.6	34
312	LIMITING ACCRETION ONTO MASSIVE STARS BY FRAGMENTATION-INDUCED STARVATION. Astrophysical Journal, 2010, 725, 134-145.	1.6	145
313	Modelling CO formation in the turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	126
314	Equilibrium initialization and stability of three-dimensional gas discs. Monthly Notices of the Royal Astronomical Society, 2010, 407, 705-720.	1.6	40
315	Numerical and semi-analytic core mass distributions in supersonic isothermal turbulence. Astronomy and Astrophysics, 2010, 516, A25.	2.1	35
316	Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astronomy and Astrophysics, 2010, 520, A17.	2.1	240
317	THE GENERATION OF STRONG MAGNETIC FIELDS DURING THE FORMATION OF THE FIRST STARS. Astrophysical Journal Letters, 2010, 721, L134-L138.	3.0	159
318	Probing high-redshift quasars with ALMA. Astronomy and Astrophysics, 2010, 513, A7.	2.1	37
319	Algorithmic comparisons of decaying, isothermal, supersonic turbulence. Astronomy and Astrophysics, 2009, 508, 541-560.	2.1	81
320	THE CLUSTERING BEHAVIOR OF PRE-MAIN-SEQUENCE STARS IN NGC 346 IN THE SMALL MAGELLANIC CLOUD. Astrophysical Journal, 2009, 694, 367-375.	1.6	33
321	THE INFLUENCE OF MAGNETIC FIELDS ON THE THERMODYNAMICS OF PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2009, 703, 1096-1106.	1.6	56
322	STAR FORMATION AT VERY LOW METALLICITY. V. THE GREATER IMPORTANCE OF INITIAL CONDITIONS COMPARED TO METALLICITY THRESHOLDS. Astrophysical Journal, 2009, 694, 1161-1170.	1.6	49
323	STAR FORMATION AT VERY LOW METALLICITY. IV. FRAGMENTATION DOES NOT DEPEND ON METALLICITY FOR COLD INITIAL CONDITIONS. Astrophysical Journal, 2009, 696, 1065-1074.	1.6	47
324	HIGH- AND LOW-MASS STAR-FORMING REGIONS FROM HIERARCHICAL GRAVITATIONAL FRAGMENTATION. HIGH LOCAL STAR FORMATION RATES WITH LOW GLOBAL EFFICIENCIES. Astrophysical Journal, 2009, 707, 1023-1033.	1.6	125

#	Article	IF	CITATIONS
325	Chemical mixing in smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2009, 392, 1381-1387.	1.6	58
326	Clump morphology and evolution in MHD simulations of molecular cloud formation. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1082-1092.	1.6	193
327	The first galaxies: signatures of the initial starburst. Monthly Notices of the Royal Astronomical Society, 2009, 399, 37-47.	1.6	75
328	The observational signature of the first H ii regions. Monthly Notices of the Royal Astronomical Society, 2009, 399, 639-649.	1.6	53
329	Cosmic constraints rule out s-wave annihilation of light dark matter. Physical Review D, 2009, 79, .	1.6	6
330	Dark stars: Implications and constraints from cosmic reionization and extragalactic background radiation. Physical Review D, 2009, 79, .	1.6	26
331	THE FRACTAL DENSITY STRUCTURE IN SUPERSONIC ISOTHERMAL TURBULENCE: SOLENOIDAL VERSUS COMPRESSIVE ENERGY INJECTION. Astrophysical Journal, 2009, 692, 364-374.	1.6	175
332	INFLUENCE OF PRIMORDIAL MAGNETIC FIELDS ON 21 CM EMISSION. Astrophysical Journal, 2009, 692, 236-245.	1.6	37
333	The star formation efficiency and its relation to variations in the initial mass function. Monthly Notices of the Royal Astronomical Society, 2008, 386, 3-10.	1.6	47
334	The first galaxies: assembly, cooling and the onset of turbulence. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1021-1036.	1.6	192
335	The ISM in spiral galaxies: can cooling in spiral shocks produce molecular clouds?. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1097-1110.	1.6	85
336	Is the Scaling of Supersonic Turbulence Universal?. Physical Review Letters, 2008, 101, 194505.	2.9	90
337	Reionization: A probe for the stellar population and the physics of the early universe. Physical Review D, 2008, 78, .	1.6	59
338	Ionization front-driven turbulence in the clumpy interstellar medium. Physica Scripta, 2008, T132, 014026.	1.2	14
339	The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing. Astrophysical Journal, 2008, 688, L79-L82.	1.6	418
340	On the Constancy of the Characteristic Mass of Young Stars. Astrophysical Journal, 2008, 681, 365-374.	1.6	84
341	From the warm magnetized atomic medium to molecular clouds. Astronomy and Astrophysics, 2008, 486, L43-L46.	2.1	174
342	Effects of primordial chemistry on the cosmic microwave background. Astronomy and Astrophysics, 2008, 490, 521-535.	2.1	66

#	Article	IF	CITATIONS
343	The First Stellar Cluster. Astrophysical Journal, 2008, 672, 757-764.	1.6	180
344	Turbulent mixing in the interstellar medium: an application for Lagrangian tracer particles. Physica Scripta, 2008, T132, 014025.	1.2	38
345	The First Supernova Explosions: Energetics, Feedback, and Chemical Enrichment. Astrophysical Journal, 2007, 670, 1-14.	1.6	134
346	Star Formation at Very Low Metallicity. II. On the Insignificance of Metalâ€Line Cooling During the Early Stages of Gravitational Collapse. Astrophysical Journal, 2007, 660, 1332-1343.	1.6	53
347	Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?. Astrophysical Journal, 2007, 668, 1028-1041.	1.6	62
348	Molecular Cloud Evolution. II. From Cloud Formation to the Early Stages of Star Formation in Decaying Conditions. Astrophysical Journal, 2007, 657, 870-883.	1.6	291
349	Clump lifetimes and the initial mass function. Monthly Notices of the Royal Astronomical Society, 2007, 379, 57-62.	1.6	67
350	The stellar mass spectrum in warm and dusty gas: deviations from Salpeter in the Galactic centre and in circumnuclear starburst regions. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 374, L29-L33.	1.2	45
351	Evolving structures of star-forming clusters. Astronomy and Astrophysics, 2006, 449, 151-159.	2.1	87
352	The Mass Spectra of Cores in Turbulent Molecular Clouds and Implications for the Initial Mass Function. Astrophysical Journal, 2006, 637, 384-391.	1.6	68
353	Evolution of Class 0 protostars: models versus observations. Monthly Notices of the Royal Astronomical Society, 2006, 368, 435-446.	1.6	21
354	Star Formation in Isolated Disk Galaxies. II. Schmidt Laws and Efficiency of Gravitational Collapse. Astrophysical Journal, 2006, 639, 879-896.	1.6	76
355	Quiescent and Coherent Cores from Gravoturbulent Fragmentation. Astrophysical Journal, 2005, 620, 786-794.	1.6	103
356	Control of Star Formation in Galaxies by Gravitational Instability. Astrophysical Journal, 2005, 620, L19-L22.	1.6	73
357	Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse. Astrophysical Journal, 2005, 626, 823-843.	1.6	88
358	Number ratios of young stellar objects in embedded clusters. Astronomy and Astrophysics, 2005, 437, 911-918.	2.1	6
359	The stellar mass spectrum from non-isothermal gravoturbulent fragmentation. Astronomy and Astrophysics, 2005, 435, 611-623.	2.1	243
360	Protostellar angular momentum evolution during gravoturbulent fragmentation. Astronomy and Astrophysics, 2004, 423, 1-12.	2.1	41

#	Article	IF	CITATIONS
361	Control of star formation by supersonic turbulence. Reviews of Modern Physics, 2004, 76, 125-194.	16.4	1,392
362	Formation of Globular Clusters in Galaxy Mergers. Astrophysical Journal, 2004, 614, L29-L32.	1.6	60
363	Protostellar mass accretion rates from gravoturbulent fragmentation. Astronomy and Astrophysics, 2004, 419, 405-417.	2.1	57
364	MODEST-2: a summary. New Astronomy, 2003, 8, 605-628.	0.8	31
365	MODEST-1: Integrating stellar evolution and stellar dynamics. New Astronomy, 2003, 8, 337-370.	0.8	34
366	Diffusion in supersonic turbulent compressible flows. Physical Review E, 2003, 67, 046311.	0.8	35
367	The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State. Astrophysical Journal, 2003, 592, 975-985.	1.6	160
368	Draco: A Failure of the Tidal Model. Astrophysical Journal, 2003, 589, 798-809.	1.6	50
369	Dynamic Cores in Hydrostatic Disguise. Astrophysical Journal, 2003, 592, 188-202.	1.6	92
370	About the morphology of dwarf spheroidal galaxies and their dark matter content. Astronomy and Astrophysics, 2003, 406, 847-854.	2.1	41
371	A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency: First Tests. Astrophysical Journal, 2003, 585, L131-L134.	1.6	140
372	Are Dwarf Spheroidal Galaxies Dark Matter Dominated or Remnants of Disrupted Larger Satellite Galaxies? A Possible Test. Astrophysical Journal, 2002, 566, 838-844.	1.6	18
373	The First Million Years of the Sun: A Calculation of the Formation and Early Evolution of a Solar Mass Star. Astrophysical Journal, 2001, 560, L185-L188.	1.6	45
374	The Formation of Stellar Clusters: Gaussian Cloud Conditions. II Astrophysical Journal, 2001, 549, 386-401.	1.6	124
375	Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence. Astrophysical Journal, 2001, 547, 280-291.	1.6	174
376	The Formation of Stellar Clusters: Mass Spectra from Turbulent Molecular Cloud Fragmentation. Astrophysical Journal, 2001, 556, 837-846.	1.6	210
377	The mean surface density of companions in a stellar-dynamical context. Astronomy and Astrophysics, 2001, 372, 105-116.	2.1	10
378	On the structure of self-gravitating molecular clouds. Astronomy and Astrophysics, 2001, 379, 1005-1016.	2.1	40

#	Article	IF	CITATIONS
379	The Formation of Stellar Clusters: Time-Varying Protostellar Accretion Rates. Astrophysical Journal, 2001, 550, L77-L80.	1.6	41
380	Oneâ€Point Probability Distribution Functions of Supersonic Turbulent Flows in Selfâ€gravitating Media. Astrophysical Journal, 2000, 535, 869-886.	1.6	238
381	Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence. Astrophysical Journal, 2000, 535, 887-906.	1.6	341
382	The Formation of Stellar Clusters: Gaussian Cloud Conditions. I Astrophysical Journal, Supplement Series, 2000, 128, 287-319.	3.0	230
383	The Decay of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds. Astrophysics and Space Science, 1998, 261, 195-196.	0.5	15
384	Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds. Physical Review Letters, 1998, 80, 2754-2757.	2.9	416
385	Fragmentation of Molecular Clouds: The Initial Phase of a Stellar Cluster. Astrophysical Journal, 1998, 501, L205-L208.	1.6	155
386	Dwarf Spheroidal Satellite Galaxies without Dark Matter: Results from Two Different Numerical Techniques. Astrophysical Journal, 1998, 498, 143-155.	1.6	100
387	A Multiply-Imaged <i>z</i> â^¼ 6.3 Lyman Alpha Emitter candidate behind Abell 2261. Monthly Notices of the Royal Astronomical Society, 0, , stx157.	1.6	3
388	FirstLight II: Star formation rates of primeval galaxies from z=5-15. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	28
389	Hubble Tarantula Treasury Project – VI. Identification of Pre–Main-Sequence Stars using Machine Learning techniques. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	7
390	Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	26