List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662802/publications.pdf Version: 2024-02-01

YVES COMEALL

#	Article	IF	CITATIONS
1	Design of a zero liquid discharge leachate treatment system using an evapotranspiration willow bed. Water Research, 2022, 209, 117950.	5.3	3
2	Establishment and potential use of woody species in treatment wetlands. International Journal of Phytoremediation, 2020, 22, 295-304.	1.7	9
3	Two-year performance of single-stage vertical flow treatment wetlands planted with willows under cold-climate conditions. Ecological Engineering, 2020, 153, 105912.	1.6	3
4	In situ chelation of phosphorus using microencapsulated aluminum and iron sulfate to bind intestinal phosphorus in rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 2020, 269, 114675.	1.1	2
5	Optimization of the wastewater treatment capacity of a short rotation willow coppice vegetation filter. Ecological Engineering, 2020, 158, 106013.	1.6	7
6	Macrophyte Potential to Treat Leachate Contaminated with Wood Preservatives: Plant Tolerance and Bioaccumulation Capacity. Plants, 2020, 9, 1774.	1.6	4
7	High biomass yield increases in a primary effluent wastewater phytofiltration are associated to altered leaf morphology and stomatal size in Salix miyabeana. Science of the Total Environment, 2020, 738, 139728.	3.9	14
8	Chemical Clogging and Evolution of Head Losses in Steel Slag Filters Used for Phosphorus Removal. Water (Switzerland), 2020, 12, 1517.	1.2	5
9	Phosphorus Removal and Carbon Dioxide Capture in a Pilot Conventional Septic System Upgraded with a Sidestream Steel Slag Filter. Water (Switzerland), 2020, 12, 275.	1.2	2
10	Fate and inhibitory effect of silver nanoparticles in high rate moving bed biofilm reactors. Science of the Total Environment, 2019, 647, 1199-1210.	3.9	18
11	Ecophysiological Responses of a Willow Cultivar (Salix miyabeana â€~SX67') Irrigated with Treated Wood Leachate. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	5
12	Impacts of Continuous Inflow of Low Concentrations of Silver Nanoparticles on Biological Performance and Microbial Communities of Aerobic Heterotrophic Wastewater Biofilm. Environmental Science & Technology, 2019, 53, 9148-9159.	4.6	10
13	Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. Journal of Environmental Management, 2019, 246, 526-537.	3.8	25
14	Editorial: Water Resource Recovery Modelling. Water Science and Technology, 2019, 79, 1-2.	1.2	2
15	Treatment and valorization of a primary municipal wastewater by a short rotation willow coppice vegetation filter. Ecological Engineering, 2019, 130, 32-44.	1.6	21
16	Evapotranspiration of a willow cultivar (Salix miyabeana SX67) grown in a full-scale treatment wetland. Ecological Engineering, 2019, 127, 254-262.	1.6	23
17	Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess. Water Research, 2018, 129, 11-19.	5.3	7
18	Steel slag filter design criteria for phosphorus removal from wastewater in decentralized applications. Water Research, 2018, 143, 28-37.	5.3	30

#	Article	IF	CITATIONS
19	Recovery of particulate matter from a high-rate moving bed biofilm reactor by high-rate dissolved air flotation. Water Quality Research Journal of Canada, 2018, 53, 181-190.	1.2	4
20	Effect of ozonation on anaerobic digestion sludge activity and viability. Chemosphere, 2017, 176, 405-411.	4.2	36
21	Ozonation of Primary Sludge and Digested Sludge to Increase Methane Production in a Chemically Enhanced Primary Treatment Facility. Ozone: Science and Engineering, 2017, 39, 148-158.	1.4	4
22	Treatment of a mixed wood preservative leachate by a hybrid constructed wetland and a willow planted filter. Water Science and Technology, 2017, 76, 164-171.	1.2	6
23	Sludge reduction via biodegradation of the endogenous residue (XE): experimental verification and modeling. Water Science and Technology, 2017, 75, 561-570.	1.2	3
24	Numerical simulations with the P-Hydroslag model to predict phosphorus removal by steel slag filters. Water Research, 2017, 126, 421-432.	5.3	12
25	Organic matter capture by a high-rate inoculum-chemostat and MBBR system. Water Quality Research Journal of Canada, 2017, 52, 166-177.	1.2	3
26	Assessing Alternative Media for Ballasted Flocculation. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	18
27	Activated Sludge Production Parameters and Nutrient Content of Organic Sludge Components. Water Environment Research, 2017, 89, 51-61.	1.3	1
28	Compact secondary treatment train combining a lab-scale moving bed biofilm reactor and enhanced flotation processes. Water Research, 2016, 106, 571-582.	5.3	14
29	Treatment of fish farm sludge supernatant by aerated filter beds and steel slag filters—effect of organic loading rate. Ecological Engineering, 2016, 94, 190-199.	1.6	17
30	Improving phosphorus removal of conventional septic tanks by a recirculating steel slag filter. Water Quality Research Journal of Canada, 2015, 50, 211-218.	1.2	11
31	Mechanisms for Reduced Excess Sludge Production in the Cannibal Process. Water Environment Research, 2015, 87, 687-696.	1.3	3
32	Activated sludge with low solids production: modified ASM1 modeling and simulation. Desalination and Water Treatment, 2014, , 1-12.	1.0	1
33	Phosphorus Removal by Steel Slag Filters: Modeling Dissolution and Precipitation Kinetics to Predict Longevity. Environmental Science & Technology, 2014, 48, 7486-7493.	4.6	29
34	Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering, 2014, 68, 214-222.	1.6	91
35	Modelling the degradation of endogenous residue and â€~unbiodegradable' influent organic suspended solids to predict sludge production. Water Science and Technology, 2013, 67, 789-796.	1.2	26
36	Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Research, 2013, 47, 1512-1520.	5.3	72

#	Article	IF	CITATIONS
37	Effect of plant species on sludge dewatering and fate of pollutants in sludge treatment wetlands. Ecological Engineering, 2013, 61, 593-600.	1.6	36
38	Critical review of activated sludge modeling: State of process knowledge, modeling concepts, and limitations. Biotechnology and Bioengineering, 2013, 110, 24-46.	1.7	97
39	Effects of Long Exposure to Low Temperatures on Nitrifying Biofilm and Biomass in Wastewater Treatment. Water Environment Research, 2012, 84, 328-338.	1.3	32
40	Characterization of the heterotrophic biomass and the endogenous residue of activated sludge. Water Research, 2012, 46, 653-668.	5.3	33
41	Biodegradation of the endogenous residue of activated sludge in a membrane bioreactor with continuous or on-off aeration. Water Research, 2012, 46, 2837-2850.	5.3	32
42	Model of Phosphorus Precipitation and Crystal Formation in Electric Arc Furnace Steel Slag Filters. Environmental Science & Technology, 2012, 46, 1465-1470.	4.6	71
43	Decreasing phosphorus discharge in fish farm ponds by treating the sludge generated with sludge drying beds. Aquaculture, 2011, 318, 7-14.	1.7	5
44	Hydrocycloning Influent, Mixed Liquor or Return Activated Sludge for Best Grit Removal and Sludge Production Reduction. Proceedings of the Water Environment Federation, 2011, 2011, 2326-2338.	0.0	0
45	Steel Slag Filtration for Extensive Treatment of Mining Wastewater. Proceedings of the Water Environment Federation, 2011, 2011, 188-201.	0.0	3
46	Reducing Secondary Sludge Production by Providing a Long Sludge Age, Mixed Liquor Fermentation and the Removal of Unbiodegradable Components. Proceedings of the Water Environment Federation, 2011, 2011, 6401-6408.	0.0	0
47	Geosmin causes off-flavour in arctic charr in recirculating aquaculture systems. Aquaculture Research, 2011, 42, 360-365.	0.9	45
48	Ozonation of endogenous residue and active biomass from a synthetic activated sludge. Water Science and Technology, 2011, 63, 297-302.	1.2	10
49	Modeling Thermomechanical Pulp and Paper Activated Sludge Treatment Plants to Gain Insight to the Causes of Bulking. Water Environment Research, 2010, 82, 362-373.	1.3	3
50	Data Reconciliation for Wastewater Treatment Plant Simulation Studies—Planning for Highâ€Quality Data and Typical Sources of Errors. Water Environment Research, 2010, 82, 426-433.	1.3	46
51	Characterizing hydrocyclone performance for grit removal from wastewater treatment activated sludge plants. Minerals Engineering, 2010, 23, 359-364.	1.8	18
52	Minimizing phosphorus discharge from aquaculture earth ponds by a novel sediment retention system. Aquacultural Engineering, 2010, 43, 94-100.	1.4	15
53	Investigation of Laboratory-Scale and Pilot-Scale Attached Growth Ammonia Removal Kinetics at Cold Temperature and Low Influent Carbon. Water Quality Research Journal of Canada, 2010, 45, 427-436.	1.2	21
54	Combination of Slag, Limestone and Sedimentary Apatite in Columns for Phosphorus Removal from Sludge Fish Farm Effluents. Water (Switzerland), 2010, 2, 500-509.	1.2	11

#	Article	IF	CITATIONS
55	Modeling the Effect of Plants and Peat on Evapotranspiration in Constructed Wetlands. International Journal of Chemical Engineering, 2010, 2010, 1-6.	1.4	10
56	Uncertainty and variability in enhanced biological phosphorus removal (EBPR) stoichiometry: consequences for process modelling and optimization. Water Science and Technology, 2010, 61, 1793-1800.	1.2	5
57	New framework for standardized notation in wastewater treatment modelling. Water Science and Technology, 2010, 61, 841-857.	1.2	73
58	Biodegradation of the endogenous residue of activated sludge. Water Research, 2010, 44, 2179-2188.	5.3	90
59	Biological Phosphorus Removal and Denitrification of a Fish Farm Effluent in a Sequencing Moving Bed Biofilm Reactor. Water Quality Research Journal of Canada, 2009, 44, 233-242.	1.2	1
60	Biological Phosphorus Removal: Impact of the Aerobic Phase on Modeling Continuous-Flow Systems. Proceedings of the Water Environment Federation, 2009, 2009, 63-83.	0.0	0
61	Inhibition of biological phosphorus removal in a sequencing moving bed biofilm reactor in seawater. Water Science and Technology, 2009, 59, 1101-1110.	1.2	6
62	Kinetic analysis of attached growth nitrification in cold climates. Water Science and Technology, 2009, 60, 1173-1184.	1.2	32
63	Effect of plant and artificial aeration on solids accumulation and biological activities in constructed wetlands. Ecological Engineering, 2009, 35, 1005-1010.	1.6	62
64	In situ characterization of nitrifying biofilm: Minimizing biomass loss and preserving perspective. Water Research, 2009, 43, 1775-1787.	5.3	45
65	Comment on "Modelling the PAO–GAO competition: Effects of carbon source, pH and temperature―by Lopez-Vazquez, C.M., Oehmen, A., Hooijmans, C.M., Brdjanovic, D., Gijzen, H.J., Yuan, Z., van Loosdrecht, M.C.M. Water Res. (2009). Water Research, 2009, 43, 2947-2949.	5.3	3
66	Dynamic modelling of nitrification in an aerated facultative lagoon. Water Research, 2008, 42, 424-432.	5.3	6
67	A time series model for influent temperature estimation: Application to dynamic temperature modelling of an aerated lagoon. Water Research, 2008, 42, 2551-2562.	5.3	17
68	Process Modeling of Aerated Facultative Lagoon Systems: Practical Applications. Proceedings of the Water Environment Federation, 2008, 2008, 1462-1475.	0.0	0
69	Schematic Representation of Activated Sludge Models. Proceedings of the Water Environment Federation, 2008, 2008, 3266-3282.	0.0	1
70	Effects of artificial aeration, macrophyte species, and loading rate on removal efficiency in constructed wetland mesocosms treating fish farm wastewater. Journal of Environmental Engineering and Science, 2007, 6, 409-414.	0.3	48
71	Effect of loading rate on performance of constructed wetlands treating an anaerobic supernatant. Water Science and Technology, 2007, 56, 23-29.	1.2	23
72	Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Science and Technology, 2007, 56, 249-254.	1.2	171

YVES COMEAU

#	Article	IF	CITATIONS
73	Effect of baffles on nitrification in aerated facultative lagoons in a cold climate. Water Science and Technology, 2007, 55, 73-79.	1.2	5
74	Modelling Nitrification of a Lagoon Effluent in Moving-Bed Biofilm Reactors. Water Quality Research Journal of Canada, 2007, 42, 284-294.	1.2	14
75	Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification. Water Research, 2006, 40, 249-258.	5.3	36
76	Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research, 2006, 40, 1547-1554.	5.3	217
77	Phosphorus removal from wastewater by mineral apatite. Water Research, 2006, 40, 2965-2971.	5.3	120
78	Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecological Engineering, 2006, 27, 258-264.	1.6	206
79	Treatment of pig farm effluents by ultrafiltration. Journal of Membrane Science, 2005, 255, 225-231.	4.1	36
80	Design Strategy for a Simultaneous Nitrification/Denitrification of a Slaughterhouse Wastewater in a Sequencing Batch Reactor: ASM2D Modeling and Verification. Environmental Technology (United) Tj ETQq0 0 0 i	rg BT 2/Over	lo ¢k 10 Tf 50
81	Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor. Water Research, 2005, 39, 3409-3417.	5.3	35
82	Specificity and Potential Applications of the Biochemical Acidogenic Potential Method for the Anaerobic Characterization of Wastewater. Water Environment Research, 2005, 77, 340-347.	1.3	0
83	Phosphorus Saturation Potential:Â A Parameter for Estimating the Longevity of Constructed Wetland Systems. Environmental Science & Technology, 2002, 36, 4642-4648.	4.6	212
84	Phosphorus budget as a water quality management tool for closed aquatic mesocosms. Water Research, 2002, 36, 1007-1017.	5.3	57
85	Operating conditions for the determination of the biochemical acidogenic potential of wastewater. Water Research, 2002, 36, 2337-2341.	5.3	22
86	Modeling aerobic carbon source degradation processes using titrimetric data and combined respirometric-titrimetric data: Experimental data and model structure. Biotechnology and Bioengineering, 2002, 79, 741-753.	1.7	31
87	Modeling acidogenic and sulfate-reducing processes for the determination of fermentable fractions in wastewater. Biotechnology and Bioengineering, 2002, 80, 525-536.	1.7	23
88	Initiation of Biofilm Formation by Pseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities. Journal of Bacteriology, 2001, 183, 1195-1204.	1.0	415
89	Phosphorus removal from trout farm effluents by constructed wetlands. Water Science and Technology, 2001, 44, 55-60.	1.2	6
90	Two-Liquid-Phase Slurry Bioreactors To Enhance the Degradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons in Soil. Biotechnology Progress, 2000, 16, 966-972.	1.3	62

#	Article	IF	CITATIONS
91	Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation, 1999, 10, 219-233.	1.5	148
92	Enhancement of Pentachlorophenol Biodegradation Using Organic and Inorganic Supports. Bioremediation Journal, 1999, 3, 35-45.	1.0	7
93	Substrate interaction during aerobic biodegradation of creosote-related compounds in columns of sandy aquifer material. Journal of Contaminant Hydrology, 1998, 29, 165-183.	1.6	16
94	Optimization of plasma proteins concentration by ultrafiltration. Journal of Membrane Science, 1998, 142, 159-171.	4.1	32
95	Ecotoxicological Assessment and Effects of Physicochemical Factors on Biofilm Development in Groundwater Conditions. Environmental Science & amp; Technology, 1998, 32, 1105-1111.	4.6	32
96	Respirometric control of the anaerobic period duration of an SBR bio-P process. Water Science and Technology, 1997, 36, 293-300.	1.2	5
97	Respirometric control of the anaerobic period duration of an sbr bio-p process. Water Science and Technology, 1997, 36, 293.	1.2	9
98	Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil. Applied Microbiology and Biotechnology, 1997, 48, 745-752.	1.7	74
99	Substrate Interaction during Aerobic Biodegradation of Creosote-Related Compounds: A Factorial Batch Experiment. Environmental Science & amp; Technology, 1995, 29, 1944-1952.	4.6	41
100	Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol/creosate contaminated soils. Applied Microbiology and Biotechnology, 1994, 40, 926-932.	1.7	54
101	Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation. Applied Microbiology and Biotechnology, 1993, 38, 681.	1.7	67
102	Application of Molecular Biology Techniques for Isolating and Monitoring Pollutant-Degrading Bacteria. Water Quality Research Journal of Canada, 1993, 28, 275-288.	1.2	32
103	Evaluation of the Feasibility of Implementing Biological Phosphorus Removal in Wastewater Treatment Plants. Water Quality Research Journal of Canada, 1991, 26, 475-494.	1.2	0
104	Indirect Polyphosphate Quantification in Activated Sludge. Water Quality Research Journal of Canada, 1990, 25, 161-174.	1.2	8
105	Determination of Poly-β-Hydroxybutyrate and Poly-β-Hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography. Applied and Environmental Microbiology, 1988, 54, 2325-2327.	1.4	138
106	Biochemical model for enhanced biological phosphorus removal. Water Research, 1986, 20, 1511-1521.	5.3	459