
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662337/publications.pdf Version: 2024-02-01

HONCOLANCL

#	Article	IF	CITATIONS
1	Classification of electrocardiogram signals with waveform morphological analysis and support vector machines. Medical and Biological Engineering and Computing, 2022, 60, 109-119.	1.6	9
2	Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Research, 2022, 15, 4068-4075.	5.8	43
3	Design and fabrication of SU-8 polymer arrayed waveguide gratings based on flexible PDMS substrates. Applied Optics, 2022, 61, 2213.	0.9	1
4	SOI Waveguide Bragg Grating Photonic Sensor for Human Body Temperature Measurement Based on Photonic Integrated Interrogator. Nanomaterials, 2022, 12, 29.	1.9	6
5	Broadband Efficient Dualâ€Polarization Airy Beam Generation with Reflective Metasurface. Physica Status Solidi (B): Basic Research, 2021, 258, 2100002.	0.7	1
6	Subwavelength optical localization with toroidal excitations in plasmonic and <scp>Mie</scp> metamaterials. InformaÄnÃ-Materiály, 2021, 3, 577-597.	8.5	27
7	Broadband Efficient Polarizationâ€Pure Airy Beam Generation Based on Three‣ayer Metasurface. Physica Status Solidi (B): Basic Research, 2021, 258, 2000621.	0.7	2
8	Control of phase, polarization, and amplitude based on geometric phase in a racemic helix array. Photonics Research, 2021, 9, 2265.	3.4	4
9	Artificial Intelligence-Enabled ECG Algorithm Based on Improved Residual Network for Wearable ECG. Sensors, 2021, 21, 6043.	2.1	1
10	Optical Realization of Wave-Based Analog Computing with Metamaterials. Applied Sciences (Switzerland), 2021, 11, 141.	1.3	15
11	Active Control of Terahertz Toroidal Excitations in a Hybrid Metasurface with an Electrically Biased Silicon Layer. Advanced Photonics Research, 2021, 2, 2100103.	1.7	19
12	Fully Photonic Integrated Wearable Optical Interrogator. ACS Photonics, 2021, 8, 3607-3618.	3.2	5
13	Silicon Waveguide Integrated with Germanium Photodetector for a Photonic-Integrated FBG Interrogator. Nanomaterials, 2020, 10, 1683.	1.9	15
14	The Structural, Electronic, and Optical Properties of Ge/Si Quantum Wells: Lasing at a Wavelength of 1550 nm. Nanomaterials, 2020, 10, 1006.	1.9	2
15	Frequency Shiftable Liquid Crystal Antennae with Different Feeding Techniques. , 2020, , .		0
16	The dual-frequency zero-backward scattering realized in a hybrid metallo-dielectric nanoantenna. AIP Advances, 2019, 9, 075121.	0.6	14
17	Geometric Phase Based Circular Array for Multimode Vortex Beam Generation. Annalen Der Physik, 2019, 531, 1900367.	0.9	1
18	Realizing Broadband Transparency via Manipulating the Hybrid Coupling Modes in Metasurfaces for Highâ€Efficiency Metalens. Advanced Optical Materials, 2019, 7, 1900016.	3.6	22

#	Article	IF	CITATIONS
19	Poly(dimethylsilylene)diacetylene-Guided ZIF-Based Heterostructures for Full Ku-Band Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 17706-17713.	4.0	94
20	Hyperbolic Metamaterial Devices for Wavefront Manipulation. Laser and Photonics Reviews, 2019, 13, 1800081.	4.4	69
21	Graphene Plasmonics: A Platform for 2D Optics. Advanced Optical Materials, 2019, 7, 1800537.	3.6	139
22	Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances. ACS Photonics, 2018, 5, 1612-1618.	3.2	123
23	Stabilization of Photonic Microwave Generation in Vertical-Cavity Surface-Emitting Lasers With Optical Injection and Feedback. Journal of Lightwave Technology, 2018, 36, 4347-4353.	2.7	13
24	Achieving a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Q</mml:mi> response in metamaterials by manipulating the toroidal excitations. Physical Review A, 2018, 97, .</mml:math 	1.0	67
25	Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals. Plasmonics, 2018, 13, 1153-1158.	1.8	36
26	Broadband and high-efficiency vortex beam generator based on a hybrid helix array. Optics Letters, 2018, 43, 1538.	1.7	19
27	Broadband efficient vortex beam generation with metallic helix array. Applied Physics Letters, 2018, 113,	1.5	4
28	An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Scientific Reports, 2017, 7, 40441.	1.6	104
29	Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System. Sensors, 2016, 16, 1744.	2.1	67
30	Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies. Optical Materials Express, 2016, 6, 2448.	1.6	38
31	Spatially oriented plasmonic â€~nanograter' structures. Scientific Reports, 2016, 6, 28764.	1.6	12
32	Electrically Tunable Goos–Hächen Effect with Graphene in the Terahertz Regime. Advanced Optical Materials, 2016, 4, 1824-1828.	3.6	144
33	Negative reflection from metal/graphene plasmonic gratings. Optics Letters, 2016, 41, 348.	1.7	26
34	Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Scientific Reports, 2015, 5, 13956.	1.6	115
35	Directly patterned substrate-free plasmonic "nanograter―structures with unusual Fano resonances. Light: Science and Applications, 2015, 4, e308-e308.	7.7	105
36	Tunable terahertz coherent perfect absorption in a monolayer graphene. Optics Letters, 2014, 39, 6269.	1.7	116

#	Article	IF	CITATIONS
37	A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film. Applied Physics Letters, 2014, 104, 042906.	1.5	39
38	Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Applied Physics Letters, 2014, 104, .	1.5	81
39	Suppressed ferroelectric relaxor behavior of Mnâ€modified Ba(<scp>Z</scp> r _{0.3} <scp>T</scp> i _{0.7}) <scp>O</scp> ₃ relaxor ceramics. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 788-794.	0.8	3
40	Light Amplification with Low-Gain Material: Harvesting Harmonic Resonance Modes of Surface Plasmon Polaritons on a Magnetic Meta-Surface. Plasmonics, 2013, 8, 793-796.	1.8	3
41	Directly Diode-Pumped Ho:YAG Ceramic Laser. IEEE Photonics Technology Letters, 2013, 25, 2153-2155.	1.3	6
42	Low-loss and high- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> planar metamaterial with toroidal moment. Physical Review B, 2013, 87, .	1.1	153
43	Highly efficient beam steering with a transparent metasurface. Optics Express, 2013, 21, 10739.	1.7	155
44	Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Optics Letters, 2013, 38, 5410.	1.7	55
45	Photonic band gap of a graphene-embedded quarter-wave stack. Physical Review B, 2013, 88, .	1.1	72
46	Subwavelength imaging with a fishnet flat lens. Physical Review B, 2013, 88, .	1.1	14
47	The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses. Light: Science and Applications, 2013, 2, e80-e80.	7.7	96
48	Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom. Optics Express, 2012, 20, 24813.	1.7	6
49	Collimation effect inside complete bandgap of electromagnetic surface resonance states on a metal plate perforated with a triangular array of air holes. Optics Express, 2012, 20, 25520.	1.7	3
50	Extend the omnidirectional electronic gap of Thue-Morse aperiodic gapped graphene superlattices. Applied Physics Letters, 2012, 101, .	1.5	23
51	Dielectric Properties of <scp><scp>Ba</scp></scp> Film at Terahertz Measured by Metamaterials. Journal of the American Ceramic Society, 2012, 95, 1167-1169.	> <su ₽.9 <su< td=""><td>b>3</td></su<></su 	b>3
52	Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Applied Physics Letters, 2011, 99, .	1.5	235
53	Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures. Optics Express, 2011, 19, 21425.	1.7	25
54	An ultrathin twist-structure polarization transformer based on fish-scale metallic wires. Applied Physics Letters, 2011, 98, .	1.5	88

#	Article	IF	CITATIONS
55	Nonlinear properties of meta-dimer comprised of coupled ring resonators. Journal Physics D: Applied Physics, 2011, 44, 425303.	1.3	18
56	Metallic Helix Array as a Broadband Wave Plate. Physical Review Letters, 2011, 107, 177401.	2.9	78
57	Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms. Applied Physics Letters, 2011, 98, .	1.5	50
58	The impact of local resonance on the enhanced transmission and dispersion of surface resonances. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 94-101.	1.0	13
59	Broadband negative refraction in stacked fishnet metamaterial. Applied Physics Letters, 2010, 97, .	1.5	33
60	Spatially coherent surface resonance states derived from magnetic resonances. New Journal of Physics, 2010, 12, 093020.	1.2	10
61	Anomalous reflection from hybrid metamaterial slab. Optics Express, 2010, 18, 12119.	1.7	30
62	Theory and Experimental Realization of Negative Refraction in a Metallic Helix Array. Physical Review Letters, 2010, 105, 247401.	2.9	58
63	Piezoelectricity of cross-linked polypropylene films treated by hot-stretching. , 2009, , .		3
64	Electromagnetic tunneling in a sandwich structure containing single negative media. Physical Review E, 2009, 79, 026601.	0.8	42
65	Optical properties of subwavelength metallic–dielectric multilayers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 730-734.	0.9	8
66	Experimental study of quasi-one-dimensional comb-like photonic crystals containing left-handed material. Optics Communications, 2008, 281, 3681-3685.	1.0	9
67	Experimental investigation of interface states in photonic crystal heterostructures. Physical Review E, 2008, 78, 026607.	0.8	64
68	Inhomogeneous composite right-/left-handed transmission line. , 2008, , .		0
69	Highly localized mode in a pair structure made of epsilon-negative and mu-negative metamaterials. Journal of Applied Physics, 2008, 104, 013107.	1.1	16
70	Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime. Physical Review E, 2008, 78, 035601.	0.8	14
71	Zero-bar n gaps of photonic crystals consisting of positive and negative index materials in microstrip transmission lines. Journal Physics D: Applied Physics, 2007, 40, 2579-2583.	1.3	25
72	Experimental investigation of mu negative of Bragg gap in one-dimensional composite right/left-handed transmission line. Journal of Applied Physics, 2007, 102, 033711.	1.1	8

#	Article	IF	CITATIONS
73	Local Vortex Mode in Asymmetric Coupler Composed of Conventional Microstrip and Composite Right/Left-Handed Transmission Line with Lumped Elements. , 2007, , .		0
74	Time-domain study of vortexlike interface mode in metamaterials. Applied Physics Letters, 2007, 91, 221907.	1.5	3
75	A novel filter based on zeroth-order resonance by means of CRLH transmission line. Microwave and Optical Technology Letters, 2007, 49, 1015-1018.	0.9	8
76	Simplified description of asymmetric right-handed composite right/left-handed coupler in microstrip chip technology. Microwave and Optical Technology Letters, 2007, 49, 2063-2068.	0.9	7
77	Multichanneled filter based on a branchy defect in microstrip photonic crystal. Applied Physics Letters, 2006, 88, 081106.	1.5	19
78	Tunneling modes of photonic heterostructures consisting of single-negative materials. Applied Physics Letters, 2006, 88, 211112.	1.5	76
79	Investigation on abnormal group velocities in 1D coaxial photonic crystals. Science Bulletin, 2006, 51, 1281-1286.	1.7	1
80	<title>Multi-band reflectivity from metallic photonic crystals containing spiral-like patterns</title> . , 2006, 6029, 482.		0
81	All-dimensional subwavelength cavities made with metamaterials. Applied Physics Letters, 2006, 89, 104101.	1.5	36
82	Direct observation of negative phase velocity and positive group velocity in time domain for composite right/left-handed transmission lines. Journal of Applied Physics, 2006, 100, 113503.	1.1	19
83	Directive emissions from subwavelength metamaterial-based cavities. Applied Physics Letters, 2005, 86, 101101.	1.5	150
84	Quasi-periodic planar metamaterial substrates. Applied Physics Letters, 2005, 86, 121108.	1.5	11
85	Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials. Journal of Applied Physics, 2005, 98, 013101.	1.1	41
86	Properties of one-dimensional photonic crystals containing single-negative materials. Physical Review E, 2004, 69, 066607.	0.8	265
87	Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Applied Physics Letters, 2003, 83, 5386-5388.	1.5	320
88	Band-gap extension of disordered 1D binary photonic crystals. Physica B: Condensed Matter, 2000, 279, 164-167.	1.3	58
89	Disordered dielectric high reflectors with broadband from visible to infrared. Applied Physics Letters, 1999, 74, 3260-3262.	1.5	20
90	Two-dimensional disordered photonic crystals with an average periodic lattice. Physical Review B, 1997, 56, 10734-10736.	1.1	13

#	Article	IF	CITATIONS
91	Localization of light for dissipative and disordered one-dimensional systems. Physical Review B, 1996, 54, 11873-11875.	1.1	4
92	Planar optical lattice of TiO_2 particles. Optics Letters, 1995, 20, 964.	1.7	35
93	Codirectional coupler and power divider mixed microstrip and metamaterials with lumped-elements L-C. , 0, , .		3
94	Multi-band artificial magnetic surface and its applications in antenna substrate. , 0, , .		1
95	Directive metamaterial antenna using high impedance surface. , 0, , .		0
96	A tunable one-dimension metamaterial. , 0, , .		1
97	Experimental Investigation of Tunable Defect Modes in the Comb-Like Photonic Crystals. , 0, , .		Ο
98	One-dimensional Photonic bandgap structures by periodically loaded rings on microstrip line. , 0, , .		0
99	High directive antenna using quasi-periodic planar metamaterial substrates. , 0, , .		Ο
100	Tunable Asymmetric Composite Right-/Left -Handed Transmission Line Directional Coupler Controlled by Applied Voltage. , 0, , .		1
101	Directive emissions from subwavelength metamaterial-based cavities. , 0, , .		86
102	Multi-Band Subwavelength Magnetic Reflectors Based on Spiral. , 0, , .		0
103	Planar Metamaterials and Applications in Directive Antennas. , 0, , .		0
104	The Bragg Gap on One-Dimensional Composite Right/Left-Handed Transmission Line. , 0, , .		1

The Bragg Gap on One-Dimensional Composite Right/Left-Handed Transmission Line. , 0, , . 104