Rubén GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662282/publications.pdf

Version: 2024-02-01

60 papers 3,007 citations

28 h-index 54 g-index

61 all docs

61 does citations

61 times ranked 2035 citing authors

#	Article	IF	Citations
1	Methyltrioctylammonium Octadecanoate as Lubricant Additive to Different Base Oils. Lubricants, 2022, 10, 128.	1.2	2
2	Thermal stability, traction and tribofilm formation of three fatty acid-derived ionic liquids. Tribology International, 2021, 154, 106712.	3.0	3
3	Tribological behavior of oils additised with a phosphonium-derived ionic liquid compared to a commercial oil. Industrial Lubrication and Tribology, 2021, 73, 137-144.	0.6	1
4	Miscibility, corrosion and environmental properties of six hexanoate- and sulfonate-based protic ionic liquids. Journal of Molecular Liquids, 2021, 322, 114561.	2.3	6
5	Long-term thermal stability of fatty acid anion-based ionic liquids. Journal of Molecular Liquids, 2021, 328, 115492.	2.3	8
6	Greases additised with phosphonium-based ionic liquids - Part I: Rheology, lubricant film thickness and Stribeck curves. Tribology International, 2021, 156, 106851.	3.0	11
7	Influence of environmental conditions and oxidation on the coefficient of friction using microalloyed rail steels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 353-360.	1.3	4
8	Friction, Wear and Corrosion Behavior of Environmentally-Friendly Fatty Acid Ionic Liquids. Coatings, 2021, 11, 21.	1.2	3
9	Two fatty acid anion-based ionic liquids - part II: Effectiveness as an additive to a polyol ester. Journal of Molecular Liquids, 2020, 310, 113158.	2.3	12
10	Two fatty acid anion-based ionic liquids - part I: Physicochemical properties and tribological behavior as neat lubricants. Journal of Molecular Liquids, 2020, 305, 112827.	2.3	21
11	Two phosphonium cation-based ionic liquids as lubricant additive to a polyalphaolefin base oil. Journal of Molecular Liquids, 2019, 293, 111536.	2.3	31
12	Relationships between the physical properties and biodegradability and bacteria toxicity of fatty acid-based ionic liquids. Journal of Molecular Liquids, 2019, 292, 111451.	2.3	28
13	Tribological behavior of three fatty acid ionic liquids in the lubrication of different material pairs. Journal of Molecular Liquids, 2019, 296, 111858.	2.3	15
14	Tribological performance of three fatty acid anion-based ionic liquids (FAILs) used as lubricant additive. Journal of Molecular Liquids, 2019, 296, 111881.	2.3	23
15	Ionic-liquid lubrication of a nickel-based coating reinforced with tungsten carbide particles. Journal of Molecular Liquids, 2019, 293, 111498.	2.3	1
16	Novel fatty acid anion-based ionic liquids: Contact angle, surface tension, polarity fraction and spreading parameter. Journal of Molecular Liquids, 2019, 288, 110995.	2.3	38
17	Physicochemical, traction and tribofilm formation properties of three octanoate-, laurate- and palmitate-anion based ionic liquids. Journal of Molecular Liquids, 2019, 284, 639-646.	2.3	29
18	Tribological performance of tributylmethylammonium bis(trifluoromethylsulfonyl)amide as neat lubricant and as an additive in a polar oil. Friction, 2019, 7, 282-288.	3.4	15

#	Article	IF	Citations
19	Lubrication Properties of the Ionic Liquid Dodecyl-3 Methylimidazolium bis(trifluoromethylsulfonyl)imide. Tribology Letters, 2018, 66, 1.	1.2	10
20	Tribological behaviour of microalloyed and conventional C–Mn rail steels in a pure sliding condition. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 2201-2214.	1.3	4
21	Antifriction and Antiwear Properties of an Ionic Liquid with Fluorine-Containing Anion Used as Lubricant Additive. Tribology Letters, 2017, 65, 1.	1.2	28
22	Two phosphonium cation-based ionic liquids used as lubricant additive. Tribology International, 2017, 107, 233-239.	3.0	43
23	Isoconversional kinetic analysis applied to five phosphonium cation-based ionic liquids. Thermochimica Acta, 2017, 648, 62-74.	1.2	14
24	Corrosion activity and solubility in polar oils of three bis(trifluoromethylsulfonyl) imide/bis(trifluoromethylsulfonyl) amide ([NTF 2]) anion-based ionic liquids. Journal of Industrial and Engineering Chemistry, 2017, 56, 292-298.	2.9	9
25	Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil. Tribology International, 2017, 116, 422-430.	3.0	33
26	Assessing Boundary Film Forming Behavior of Phosphonium Ionic Liquids as Engine Lubricant Additives. Lubricants, 2016, 4, 17.	1.2	6
27	Friction, wear and tribofilm formation with a [NTf2] anion-based ionic liquid as neat lubricant. Tribology International, 2016, 103, 73-86.	3.0	24
28	Wettability and corrosion of [NTf2] anion-based ionic liquids on steel and PVD (TiN, CrN, ZrN) coatings. Surface and Coatings Technology, 2016, 302, 13-21.	2.2	39
29	Study of the Sliding Wear and Friction Behavior of WCÂ+ÂNiCrBSi Laser Cladding Coatings as a Function of Actual Concentration of WC Reinforcement Particles in Ball-on-Disk Test. Tribology Letters, 2016, 63, 1.	1.2	32
30	Wetting Properties of Seven Phosphonium Cation-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2016, 55, 9594-9602.	1.8	22
31	Phosphonium cation-based ionic liquids as neat lubricants: Physicochemical and tribological performance. Tribology International, 2016, 95, 118-131.	3.0	98
32	Effectiveness of phosphonium cation-based ionic liquids as lubricant additive. Tribology International, 2016, 98, 82-93.	3.0	71
33	Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear, 2015, 324-325, 80-89.	1.5	174
34	Ionic liquids as an additive in fully formulated wind turbine gearbox oils. Wear, 2015, 328-329, 50-63.	1.5	60
35	Torque loss and wear of FZG gears lubricated with wind turbine gear oils using an ionic liquid as additive. Tribology International, 2015, 90, 306-314.	3.0	48
36	lonic liquids as a neat lubricant applied to steel–steel contacts. Tribology International, 2014, 72, 42-50.	3.0	52

#	Article	IF	Citations
37	Effect of Shear Rate, Temperature, and Particle Concentration on the Rheological Properties of ZnO and ZrO ₂ Nanofluids. Tribology Transactions, 2014, 57, 489-495.	1.1	20
38	Lubrication of DLC Coatings with Two Tris(pentafluoroethyl)trifluorophosphate Anion-Based Ionic Liquids. Tribology Transactions, 2013, 56, 887-895.	1.1	50
39	FAPⰠAnion Ionic Liquids Used in the Lubrication of a Steel–Steel Contact. Tribology Letters, 2013, 52, 431-437.	1.2	49
40	Lubrication of PVD coatings with ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate. Tribology International, 2013, 58, 71-78.	3.0	37
41	Non-Uniform Behavior of Lubricant Flow According to Surface Texturing Distribution. , 2012, , .		0
42	1-Hexyl-3-Methylimidazolium Hexafluorophosphate as Oil Additive for the Lubrication of Steel-Steel Contacts and its Influence on the Running-In and Wear-In Periods. , 2011, , .		0
43	Microstructure of NiCrBSi Laser Cladding Coatings Textured by Nd-YAG Laser. , 2011, , .		1
44	Use of optical profilometry in the ASTM D4172 standard. Wear, 2011, 271, 2963-2967.	1.5	16
45	Lubrication of CrN Coating With Ethyl-Dimethyl-2-Methoxyethylammonium Tris(pentafluoroethyl)Trifluorophosphate Ionic Liquid as Additive to PAO 6. Tribology Letters, 2011, 41, 295-302.	1.2	57
46	Tribological behavior of laser-textured NiCrBSi coatings. Wear, 2011, 271, 925-933.	1.5	64
47	Use of ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate as base oil additive in the lubrication of TiN PVD coating. Tribology International, 2011, 44, 645-650.	3.0	65
48	Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribology International, 2011, 44, 829-833.	3.0	110
49	NiCrBSi coatings textured by Nd-YAG laser. International Journal of Surface Science and Engineering, 2011, 5, 75.	0.4	6
50	Lubrication of DLC and TiN Coatings With Two Ionic Liquids Used as Neat Lubricant and Oil Additive. , 2011, , .		1
51	Lubrication of TiN, CrN and DLC PVD Coatings with 1-Butyl-1-Methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribology Letters, 2010, 40, 269-277.	1.2	77
52	Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear, 2010, 268, 325-328.	1.5	159
53	Assessing boundary film formation of lubricant additivised with 1-hexyl-3-methylimidazolium tetrafluoroborate using ECR as qualitative indicator. Wear, 2010, 269, 112-117.	1.5	49
54	Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear, 2009, 266, 1224-1228.	1.5	133

Rubén GonzÃ;lez

#	Article	IF	CITATIONS
55	CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 2008, 265, 422-428.	1.5	575
56	Viscosity and Tribology of Copper Oxide Nanofluids., 2008,,.		2
57	Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser. Wear, 2007, 262, 301-307.	1.5	147
58	Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear, 2007, 263, 1568-1574.	1.5	106
59	Microstructural study of NiCrBSi coatings obtained by different processes. Wear, 2007, 263, 619-624.	1.5	117
60	Wear behaviour of laser clad NiCrBSi coating. Wear, 2005, 259, 870-875.	1.5	145