
## Anja Lund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662226/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles. ACS Applied Materials &<br>Interfaces, 2017, 9, 9045-9050.                                                  | 4.0  | 183       |
| 2  | Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Materials Science and Engineering Reports, 2018, 126, 1-29. | 14.8 | 172       |
| 3  | Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres.<br>Composites Science and Technology, 2011, 71, 222-229.                        | 3.8  | 119       |
| 4  | Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres<br>with a conducting core. Npj Flexible Electronics, 2018, 2, .            | 5.1  | 114       |
| 5  | Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sensors and Actuators A: Physical, 2013, 201, 477-486.                                  | 2.0  | 110       |
| 6  | A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power<br>Sources, 2020, 480, 228836.                                                | 4.0  | 88        |
| 7  | Machine-Washable Conductive Silk Yarns with a Composite Coating of Ag Nanowires and PEDOT:PSS.<br>ACS Applied Materials & Interfaces, 2020, 12, 27537-27544.                    | 4.0  | 81        |
| 8  | All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Applied Energy<br>Materials, 2018, 1, 2934-2941.                                              | 2.5  | 75        |
| 9  | Robust PEDOT:PSS Wetâ€Spun Fibers for Thermoelectric Textiles. Macromolecular Materials and Engineering, 2020, 305, 1900749.                                                    | 1.7  | 68        |
| 10 | Rollâ€ŧoâ€Roll Dyed Conducting Silk Yarns: A Versatile Material for Eâ€Textile Devices. Advanced Materials<br>Technologies, 2018, 3, 1800251.                                   | 3.0  | 56        |
| 11 | Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene). ACS Macro Letters,<br>2019, 8, 70-76.                                                             | 2.3  | 56        |
| 12 | Melt spinning of βâ€phase poly(vinylidene fluoride) yarns with and without a conductive core. Journal of Applied Polymer Science, 2011, 120, 1080-1089.                         | 1.3  | 54        |
| 13 | Textile sensing glove with piezoelectric PVDF fibers and printed electrodes of PEDOT:PSS. Textile<br>Reseach Journal, 2015, 85, 1789-1799.                                      | 1.1  | 52        |
| 14 | Piezoelectric polymeric bicomponent fibers produced by melt spinning. Journal of Applied Polymer<br>Science, 2012, 126, 490-500.                                                | 1.3  | 41        |
| 15 | Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Applied Materials &<br>Interfaces, 2020, 12, 56403-56412.                                            | 4.0  | 39        |
| 16 | All-Polymer Conducting Fibers and 3D Prints via Melt Processing and Templated Polymerization. ACS<br>Applied Materials & Interfaces, 2020, 12, 8713-8721.                       | 4.0  | 37        |
| 17 | Recyclable Polyethylene Insulation via Reactive Compounding with a Maleic Anhydride-Grafted<br>Polypropylene. ACS Applied Polymer Materials, 2020, 2, 2389-2396.                | 2.0  | 34        |
| 18 | Conducting materials as building blocks for electronic textiles. MRS Bulletin, 2021, 46, 491-501.                                                                               | 1.7  | 33        |

Anja Lund

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Melt spinning of poly(vinylidene fluoride) fibers and the influence of spinning parameters on βâ€phase<br>crystallinity. Journal of Applied Polymer Science, 2010, 116, 2685-2693.                         | 1.3  | 28        |
| 20 | Repurposing Poly(3â€hexylthiophene) as a Conductivityâ€Reducing Additive for Polyethyleneâ€Based<br>Highâ€Voltage Insulation. Advanced Materials, 2021, 33, e2100714.                                      | 11.1 | 28        |
| 21 | Analysis of the torsion angle distribution of poly(vinylidene fluoride) in the melt. Polymer, 2012, 53, 1109-1114.                                                                                         | 1.8  | 22        |
| 22 | Designing for a Wearable Affective Interface for the NAO Robot: A Study of Emotion Conveyance by Touch. Multimodal Technologies and Interaction, 2018, 2, 2.                                               | 1.7  | 22        |
| 23 | From Single Molecules to Thin Film Electronics, Nanofibers, eâ€Textiles and Power Cables: Bridging<br>Length Scales with Organic Semiconductors. Advanced Materials, 2019, 31, e1807286.                   | 11.1 | 20        |
| 24 | Bulk-Processed Pd Nanocube–Poly(methyl methacrylate) Nanocomposites as Plasmonic Plastics for<br>Hydrogen Sensing. ACS Applied Nano Materials, 2020, 3, 8438-8445.                                         | 2.4  | 20        |
| 25 | Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segments.<br>Advanced Science, 2021, 8, 2002778.                                                                      | 5.6  | 18        |
| 26 | Tuning of the elastic modulus of a soft polythiophene through molecular doping. Materials<br>Horizons, 2022, 9, 433-443.                                                                                   | 6.4  | 17        |
| 27 | Thermally Activated in Situ Doping Enables Solid-State Processing of Conducting Polymers. Chemistry of Materials, 2019, 31, 2770-2777.                                                                     | 3.2  | 15        |
| 28 | A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite. Macromolecules, 2021, 54, 3507-3516.                                            | 2.2  | 13        |
| 29 | Highâ€ŧemperature creep resistant ternary blends based on polyethylene and polypropylene for<br>thermoplastic power cable insulation. Journal of Polymer Science, 2021, 59, 1084-1094.                     | 2.0  | 10        |
| 30 | Highly insulating thermoplastic blends comprising a styrenic copolymer for direct urrent power cable insulation. High Voltage, 2022, 7, 251-259.                                                           | 2.7  | 10        |
| 31 | Sequential doping of solid chunks of a conjugated polymer for body-heat-powered thermoelectric modules. Applied Physics Letters, 2021, 119, .                                                              | 1.5  | 9         |
| 32 | Oxidation Level and Glycidyl Ether Structure Determine Thermal Processability and<br>Thermomechanical Properties of Arabinoxylan-Derived Thermoplastics. ACS Applied Bio Materials, 2021,<br>4, 3133-3144. | 2.3  | 7         |
| 33 | Hydrophobization of arabinoxylan with n-butyl glycidyl ether yields stretchable thermoplastic<br>materials. International Journal of Biological Macromolecules, 2021, 188, 491-500.                        | 3.6  | 6         |
| 34 | Side chains affect the melt processing and stretchability of arabinoxylan biomass-based thermoplastic films. Chemosphere, 2022, 294, 133618.                                                               | 4.2  | 5         |
| 35 | Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. Small, 2022, 18, e2102813.                                                                                              | 5.2  | 3         |