Jin-Cheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662157/publications.pdf Version: 2024-02-01

LIN-CHENCLL

#	Article	IF	CITATIONS
1	A MnO _{<i>x</i>} enhanced atomically dispersed iron–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 5981-5989.	10.3	18
2	Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues. Food Chemistry, 2022, 387, 132896.	8.2	30
3	Phosphatase-like activity of single-atom Ce N C nanozyme for rapid detection of Al3+. Food Chemistry, 2022, 390, 133127.	8.2	35
4	Fe-N-C nanozyme mediated bioactive paper-3D printing integration technology enables portable detection of lactose in milk. Sensors and Actuators B: Chemical, 2022, 368, 132111.	7.8	9
5	Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 503-512.	34.4	155
6	An Ionâ€Imprinting Derived Strategy to Synthesize Singleâ€Atom Iron Electrocatalysts for Oxygen Reduction. Small, 2021, 17, e2004454.	10.0	52
7	Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 2021, 33, e2006292.	21.0	300
8	Singleâ€Atomic Site Catalyst with Heme Enzymes‣ike Active Sites for Electrochemical Sensing of Hydrogen Peroxide. Small, 2021, 17, e2100664.	10.0	66
9	Highly Dispersive Cerium Atoms on Carbon Nanowires as Oxygen Reduction Reaction Electrocatalysts for Zn–Air Batteries. Nano Letters, 2021, 21, 4508-4515.	9.1	89
10	Dualâ€Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2103360.	14.9	107
11	Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-Air batteries. Applied Catalysis B: Environmental, 2021, 294, 120239.	20.2	70
12	Ionothermal-Transformation Strategy to Synthesize Hierarchically Tubular Porous Single-Iron-Atom Catalysts for High-Performance Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58576-58584.	8.0	12
13	Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Science China Materials, 2020, 63, 965-971.	6.3	71
14	Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping. ACS Catalysis, 2020, 10, 2452-2458.	11.2	103
15	2D Singleâ€Atom Catalyst with Optimized Iron Sites Produced by Thermal Melting of Metal–Organic Frameworks for Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900827.	8.6	113
16	Highly Dispersed Platinum Atoms on the Surface of AuCu Metallic Aerogels for Enabling H ₂ O ₂ Production. ACS Applied Energy Materials, 2019, 2, 7722-7727.	5.1	31
17	Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 39820-39826.	8.0	49
18	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019, 7, 14478-14482.	10.3	56

Jin-Cheng Li

#	Article	IF	CITATIONS
19	Secondary-Atom-Assisted Synthesis of Single Iron Atoms Anchored on N-Doped Carbon Nanowires for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 5929-5934.	11.2	149
20	Singleâ€Atom Nanozyme Based on Nanoengineered Fe–N–C Catalyst with Superior Peroxidaseâ€Like Activity for Ultrasensitive Bioassays. Small, 2019, 15, e1901485.	10.0	209
21	Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts. Carbon, 2019, 147, 303-311.	10.3	44
22	Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions. Topics in Current Chemistry, 2019, 377, 4.	5.8	29
23	Assembling Carbon Pores into Carbon Sheets: Rational Design of Three-Dimensional Carbon Networks for a Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 5911-5918.	8.0	24
24	N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Materials, 2018, 10, e461-e461.	7.9	103
25	Selective growth of semiconducting single-wall carbon nanotubes using SiC as a catalyst. Carbon, 2018, 135, 195-201.	10.3	11
26	Catalytic Activity of Co–X (X = S, P, O) and Its Dependency on Nanostructure/Chemical Composition in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 7014-7021.	5.1	46
27	A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon, 2018, 140, 634-643.	10.3	48
28	The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Communications, 2018, 8, 1158-1166.	1.8	27
29	Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Carbon, 2018, 139, 156-163.	10.3	97
30	Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale, 2017, 9, 8213-8219.	5.6	17
31	Selective Growth of Metalâ€Free Metallic and Semiconducting Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2017, 29, 1605719.	21.0	21
32	Heteroatomâ€Đoped Carbon Nanotube and Grapheneâ€Based Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1702002.	10.0	202
33	Carbon-encapsulated NiO nanoparticle decorated single-walled carbon nanotube thin films for binderless flexible electrodes of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24813-24819.	10.3	25
34	Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction. Carbon, 2016, 109, 632-639.	10.3	74
35	A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy and Environmental Science, 2016, 9, 3079-3084.	30.8	260
36	Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nature Communications, 2016, 7, 11160.	12.8	75

Jin-Cheng Li

#	Article	IF	CITATIONS
37	Elemental superdoping of graphene and carbon nanotubes. Nature Communications, 2016, 7, 10921.	12.8	238
38	Synthesis of high quality nitrogen-doped single-wall carbon nanotubes. Science China Materials, 2015, 58, 603-610.	6.3	9
39	A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 19201-19206.	5.6	55
40	Honeycomb-like single-wall carbon nanotube networks. Journal of Materials Chemistry A, 2014, 2, 3308-3311.	10.3	2
41	Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes. Nanoscale, 2014, 6, 12065-12070.	5.6	21
42	Structural Changes in Iron Oxide and Gold Catalysts during Nucleation of Carbon Nanotubes Studied by <i>In Situ</i>) Transmission Electron Microscopy. ACS Nano, 2014, 8, 292-301.	14.6	52