José Manuel Cimadevilla Redondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2661533/publications.pdf

Version: 2024-02-01

José Manuel Cimadevilla

#	Article	IF	CITATIONS
1	Inactivating one hippocampus impairs avoidance of a stable room-defined place during dissociation of arena cues from room cues by rotation of the arena. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3531-3536.	3.3	152
2	Specific spatial learning deficits become severe with age in Â-amyloid precursor protein transgenic mice that harbor diffuse Â-amyloid deposits but do not form plaques. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14675-14680.	3.3	151
3	Passive and active place avoidance as a tool of spatial memory research in rats. Journal of Neuroscience Methods, 2000, 102, 155-164.	1.3	82
4	Functional inactivation of dorsal hippocampus impairs active place avoidance in rats. Neuroscience Letters, 2000, 285, 53-56.	1.0	67
5	A new virtual task to evaluate human place learning. Behavioural Brain Research, 2008, 190, 112-118.	1.2	57
6	Age and gender-related differences in a spatial memory task in humans. Behavioural Brain Research, 2016, 306, 8-12.	1.2	55
7	New spatial cognition tests for mice: Passive place avoidance on stable and active place avoidance on rotating arenas. Brain Research Bulletin, 2001, 54, 559-563.	1.4	53
8	Spatial memory alterations in three models of hepatic encephalopathy. Behavioural Brain Research, 2008, 188, 32-40.	1.2	50
9	Developmental gender differences in children in a virtual spatial memory task Neuropsychology, 2014, 28, 485-495.	1.0	47
10	Spatial navigation impairment in patients with refractory temporal lobe epilepsy: Evidence from a new virtual reality-based task. Epilepsy and Behavior, 2011, 22, 364-369.	0.9	44
11	Influence of gonadal steroids on the glial fibrillary acidic protein-immunoreactive astrocyte population in young rat hippocampus. Journal of Neuroscience Research, 2005, 79, 488-494.	1.3	38
12	Sex-related differences in spatial learning during the early postnatal development of the rat. Behavioural Processes, 1999, 46, 159-171.	0.5	37
13	Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 2016, 308, 236-243.	1.2	34
14	Virtual reality tasks disclose spatial memory alterations in fibromyalgia. Rheumatology, 2009, 48, 1273-1278.	0.9	31
15	Continuous place avoidance task reveals differences in spatial navigation in male and female rats. Behavioural Brain Research, 2000, 107, 161-169.	1.2	29
16	Spatial memory alterations in children with epilepsy of genetic origin or unknown cause. Epileptic Disorders, 2014, 16, 203-207.	0.7	28
17	Effect of Neonatal Dentate Gyrus Lesion on Allothetic and Idiothetic Navigation in Rats. Neurobiology of Learning and Memory, 2001, 75, 190-213.	1.0	23
18	Partial unilateral inactivation of the dorsal hippocampus impairs spatial memory in the MWM. Cognitive Brain Research, 2005, 25, 741-746.	3.3	21

José Manuel Cimadevilla

#	Article	IF	CITATIONS
19	Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task. Behavioural Brain Research, 2011, 216, 116-121.	1.2	21
20	Acute and chronic ethanol intake: Effects on spatial and non-spatial memory in rats. Alcohol, 2012, 46, 757-762.	0.8	21
21	Hippocampal Inactivation with TTX Impairs Long-Term Spatial Memory Retrieval and Modifies Brain Metabolic Activity. PLoS ONE, 2013, 8, e64749.	1.1	21
22	Transient sex differences in the between-sessions but not in the within-session memory underlying an active place avoidance task in weanling rats Behavioral Neuroscience, 2001, 115, 695-703.	0.6	19
23	Almeria spatial memory recognition test (ASMRT): Gender differences emerged in a new passive spatial task. Neuroscience Letters, 2017, 651, 188-191.	1.0	19
24	Differential Susceptibility to the Impact of the COVID-19 Pandemic on Working Memory, Empathy, and Perceived Stress: The Role of Cortisol and Resilience. Brain Sciences, 2021, 11, 348.	1.1	19
25	Changes of cytochrome oxidase activity in rat suprachiasmatic nucleus. Brain Research, 1997, 769, 367-371.	1.1	18
26	Virtual reality assessment of walking and non-walking space in men and women with virtual reality-based tasks. PLoS ONE, 2018, 13, e0204995.	1.1	18
27	Unilateral hippocampal blockade reveals that one hippocampus is sufficient for learning a passive avoidance task. Journal of Neuroscience Research, 2007, 85, 1138-1142.	1.3	15
28	Spatial recognition memory in a virtual reality task is altered in refractory temporal lobe epilepsy. Epilepsy and Behavior, 2013, 28, 227-231.	0.9	15
29	Walking and non-walking space in an equivalent virtual reality task: Sexual dimorphism and aging decline of spatial abilities. Behavioural Brain Research, 2018, 347, 201-208.	1.2	15
30	Viewpoint-related gender differences in a spatial recognition task. Learning and Individual Differences, 2016, 50, 270-274.	1.5	14
31	Allocentric Spatial Memory Performance in a Virtual Reality-Based Task is Conditioned by Visuospatial Working Memory Capacity. Brain Sciences, 2020, 10, 552.	1.1	14
32	Shall We Dance? Dancing Modulates Executive Functions and Spatial Memory. International Journal of Environmental Research and Public Health, 2020, 17, 1960.	1.2	14
33	Hippocampal heterogeneity in spatial memory revealed by cytochrome oxidase. Neuroscience Letters, 2009, 452, 162-166.	1.0	13
34	A virtual-based task to assess place avoidance in humans. Journal of Neuroscience Methods, 2011, 196, 45-50.	1.3	13
35	Spatial skills. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 175, 65-79.	1.0	13
36	Practice of Aerobic Sports is Associated with Better Spatial Memory in Adults and Older Men. Experimental Aging Research, 2015, 41, 193-203.	0.6	12

José Manuel Cimadevilla

#	Article	IF	CITATIONS
37	Sex Differences in Spatial Memory: Comparison of Three Tasks Using the Same Virtual Context. Brain Sciences, 2021, 11, 757.	1.1	11
38	Cytochrome Oxidase Activity of the Suprachiasmatic Nucleus and Pineal Gland in Rats with Portacaval Shunt. Experimental Neurology, 2002, 173, 275-282.	2.0	10
39	Interhippocampal transfer in passive avoidance task modifies metabolic activity in limbic structures. Hippocampus, 2011, 21, 48-55.	0.9	10
40	Ten years younger: Practice of chronic aerobic exercise improves attention and spatial memory functions in ageing. Experimental Gerontology, 2019, 117, 53-60.	1.2	10
41	Diurnal locomotor activity and oxidative metabolism of the suprachiasmatic nucleus in two models of hepatic insufficiency. Journal of the Neurological Sciences, 2003, 212, 93-97.	0.3	8
42	Different vulnerability in female's spatial behaviour after unilateral hippocampal inactivation. Neuroscience Letters, 2008, 439, 89-93.	1.0	8
43	Bilateral and Unilateral Hippocampal Inactivation Did not Differ in their Effect on Consolidation Processes in the Morris Water Maze. International Journal of Neuroscience, 2008, 118, 619-626.	0.8	8
44	Spatial Recognition Memory: Differential Brain Strategic Activation According to Sex. Frontiers in Behavioral Neuroscience, 2021, 15, 736778.	1.0	8
45	Sexual orientation and spatial memory. Psicothema, 2011, 23, 752-8.	0.7	8
46	High and low schizotypal female subjects do not differ in spatial memory abilities in a virtual reality task. Cognitive Neuropsychiatry, 2014, 19, 427-438.	0.7	7
47	The Role of Gender and Familiarity in a Modified Version of the Almeria Boxes Room Spatial Task. Brain Sciences, 2021, 11, 681.	1.1	5
48	Age-related differences in the elderly in a spatial recognition task. Memory, 2019, 27, 1415-1422.	0.9	4
49	Lidocaine, tetrodotoxin and their effect on consolidation of spatial memory. Psicothema, 2009, 21, 471-4.	0.7	3
50	Aging: working memory capacity and spatial strategies in a virtual orientation task. GeroScience, 2023, 45, 159-175.	2.1	3
51	Cultural Adaptation, Validation, and Psychometric Description of the Pictorial Empathy Test (PET) in the Spanish Population. European Journal of Psychological Assessment, 2023, 39, 141-152.	1.7	1
52	P02.284 Transgenic mice overexpressing brain human amyloid precursor protein show an age-dependent cognitive impairment in the morris water maze. European Psychiatry, 2000, 15, 398s-398s.	0.1	0
53	Pre-pandemic Psychobiological Features Predict Impact of COVID-19 Confinement on Loneliness. Frontiers in Psychology, 2022, 13, 874232.	1.1	О