Michael F Covington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using RNA-Seq for Genomic Scaffold Placement, Correcting Assemblies, and Genetic Map Creation in a Common <i>Brassica rapa</i> Mapping Population. G3: Genes, Genomes, Genetics, 2017, 7, 2259-2270.	0.8	15
2	A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3: Genes, Genomes, Genetics, 2016, 6, 3169-3184.	0.8	36
3	Genetic architecture, biochemical underpinnings and ecological impact of floral <scp>UV</scp> patterning. Molecular Ecology, 2016, 25, 1122-1140.	2.0	24
4	<i>YUCCA</i> auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ, 2016, 4, e2574.	0.9	68
5	Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape. New Phytologist, 2015, 208, 257-268.	3.5	41
6	BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction. Frontiers in Plant Science, 2015, 6, 366.	1.7	116
7	A Modern Ampelography: A Genetic Basis for Leaf Shape and Venation Patterning in Grape. Plant Physiology, 2014, 164, 259-272.	2.3	233
8	Polymorphism Identification and Improved Genome Annotation of <i>Brassica rapa</i> Through Deep RNA Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 2065-2078.	0.8	29
9	Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.	3.3	325
10	Circadian control of jasmonates and salicylates. Plant Signaling and Behavior, 2013, 8, e23123.	1.2	42
11	A Quantitative Genetic Basis for Leaf Morphology in a Set of Precisely Defined Tomato Introgression Lines. Plant Cell, 2013, 25, 2465-2481.	3.1	209
12	<i>Arabidopsis</i> synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4674-4677.	3.3	276
13	Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proceedings of the United States of America, 2010, 107, 21623-21628.	3.3	158
14	Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 2008, 9, R130.	13.9	677
15	The Development of Protein Microarrays and Their Applications in DNA–Protein and Protein–Protein Interaction Analyses of Arabidopsis Transcription Factors. Molecular Plant, 2008, 1, 27-41.	3.9	78
16	The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis. PLoS Biology, 2007, 5, e222.	2.6	302
17	Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element. PLoS Genetics, 2007, 3, e172.	1.5	205
18	Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007, 448, 358-361.	13.7	599

2

MICHAEL F COVINGTON

#	Article	IF	CITATIONS
19	ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis. Plant Cell, 2001, 13, 1305-1316.	3.1	280
20	<i>ELF3</i> Encodes a Circadian Clock–Regulated Nuclear Protein That Functions in an Arabidopsis <i>PHYB</i> Signal Transduction Pathway. Plant Cell, 2001, 13, 1293-1304.	3.1	214
21	ELF3 Encodes a Circadian Clock-Regulated Nuclear Protein That Functions in an Arabidopsis PHYB Signal Transduction Pathway. Plant Cell, 2001, 13, 1293-1304.	3.1	288
22	ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis. Plant Cell, 2001, 13, 1305-1316.	3.1	265
23	Circadian Regulation of Clobal Gene Expression and Metabolism. , 0, , 132-165.		0