Francisco Méndez Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660406/publications.pdf

Version: 2024-02-01

45 papers

1,651 citations

³⁹⁴⁴²¹ 19 h-index 289244 40 g-index

48 all docs 48 docs citations

48 times ranked

1308 citing authors

#	Article	IF	Citations
1	Deep Eutectic Solvent Choline Chloride/ <i>p</i> -toluenesulfonic Acid and Water Favor the Enthalpy-Driven Binding of Arylamines to Maleimide in Aza-Michael Addition. Journal of Organic Chemistry, 2021, 86, 223-234.	3.2	11
2	Electrophilic Modulation of the Superoxide Anion Radical Scavenging Ability of Copper(II) Complexes with 4-Methyl Imidazole. Journal of Physical Chemistry A, 2021, 125, 2394-2401.	2.5	4
3	Nucleus-Independent Chemical Shift (NICS) as a Criterion for the Design of New Antifungal Benzofuranones. Molecules, 2021, 26, 5078.	3.8	4
4	"Synthesis of carbon nanomaterials by chemical vapor deposition method using green chemistry principles―, 2021, , 273-314.		5
5	Dimerization of pentacyclopentacorannulene C30H10 as a strategy to produce C60H20 as a precursor for C60. RSC Advances, 2020, 10, 3689-3693.	3.6	3
6	Analysis of the Gas Phase Acidity of Substituted Benzoic Acids Using Density Functional Concepts. Molecules, 2020, 25, 1631.	3.8	4
7	Composite synthesis from carbon nanotubes and styrene oligomers, the functionalization and magnetic field effect in their properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 7461-7469.	2.2	4
8	Green Synthesis of Symmetric Dimaleamic Acids from Dianilines and Maleic Anhydride: Behind New Bidentate Ligands for MOFs. Chemistry Proceedings, 2020, 3, .	0.1	0
9	Synthesis of carbon spheres by atmospheric pressure chemical vapor deposition from a serial of aromatic hydrocarbon precursors. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 78-85.	2.7	26
10	Effect of methyl substituents in the reactivity of methylxanthines. Journal of Molecular Modeling, 2018, 24, 331.	1.8	2
11	Hyperconjugation enhances electrophilic addition to monocyclic monoterpenes: a Fukui function perspective. Journal of Molecular Modeling, 2018, 24, 300.	1.8	1
12	Theoretical rate constant of methane oxidation from the conventional transition-state theory. Journal of Molecular Modeling, 2018, 24, 294.	1.8	4
13	Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity. Molecules, 2017, 22, 427.	3.8	13
14	Nucleophilic Attack at the Pyridine Nitrogen Atom in a Bis(imino)pyridine System: The Local Hard and Soft Acids and Bases Principle Perspective. Journal of the Mexican Chemical Society, 2017, 56, .	0.6	1
15	The Diels-Alder Cycloaddition Reaction of Substituted Hemifullerenes with 1,3-Butadiene: Effect of Electron-Donating and Electron-Withdrawing Substituents. Molecules, 2016, 21, 200.	3.8	7
16	Theoretical study of the regioselective cyclization of enaminones in the construction of benzofurans and indoles. Journal of Molecular Modeling, 2016, 22, 116.	1.8	0
17	Elimination vs Substitution Reaction. A Dichotomy between Brønsted–Lowry and Lewis Basicity. Organic Letters, 2015, 17, 767-769.	4.6	2
18	Protophilicity index and protofelicity equalization principle: new measures of Brønsted-Lowry-Lewis acid–base interactions. Journal of Molecular Modeling, 2013, 19, 3961-3967.	1.8	2

#	Article	IF	Citations
19	Synthesis of fullerenes. Journal of Physical Organic Chemistry, 2013, 26, 526-539.	1.9	101
20	Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization. Molecules, 2013, 18, 2243-2254.	3.8	6
21	Understanding the Nucleophilic Character and Stability of the Carbanions and Alkoxides of 1-(9-Anthryl)ethanol and Derivatives. Molecules, 2013, 18, 10254-10265.	3.8	6
22	Oxazole as an Electron-Deficient Diene in the Diels–Alder Reaction. Organic Letters, 2011, 13, 6358-6361.	4.6	15
23	Chemical Reactivity of the Imidazole: A Semblance of Pyridine and Pyrrole?. Organic Letters, 2011, 13, 972-975.	4.6	32
24	Design and Synthesis of Anti-MRSA Benzimidazolylbenzene-sulfonamides. QSAR Studies for Prediction of Antibacterial Activity. Molecules, 2011, 16, 175-189.	3.8	8
25	Stoichiometry, Association Constant, and Solvation Model of Chiral Hydroxyfuranones in the Presence of Pirkle's Alcohols. Spectroscopy Letters, 2011, 44, 168-175.	1.0	1
26	Influence of Fluorine Atoms and Aromatic Rings on the Acidity of Ethanol. Journal of Physical Chemistry A, 2009, 113, 10753-10758.	2.5	11
27	Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: The effect of charge distribution. Dalton Transactions, 2008, , 1233.	3.3	44
28	Selectivity in 1,3-Dipolar Cycloadditions of β-Substituted Captodative Olefins – An Experimental and DFT Transition State Study. European Journal of Organic Chemistry, 2007, 2007, 2352-2364.	2.4	22
29	Highly regioselective radical alkylation of 3-substituted pyrroles. Tetrahedron Letters, 2007, 48, 4515-4518.	1.4	41
30	Chemical reactivity of hypervalent silicon compounds: The local hard and soft acids and bases principle viewpoint. Journal of Chemical Sciences, 2005, 117, 525-531.	1.5	9
31	Fukui Function as a Descriptor of the Imidazolium Protonated Cation Resonance Hybrid Structure. Organic Letters, 2004, 6, 1781-1783.	4.6	34
32	The Local HSAB Principle and Bond Dissociation Energy ofp-Substituted Phenol. Journal of Physical Chemistry A, 2003, 107, 5874-5875.	2.5	25
33	Is the Hydrogen Atomic Charge Representative of the Acidity of Parasubstituted Phenols?. Journal of Physical Chemistry A, 2003, 107, 4526-4530.	2.5	16
34	Analysis of the bonding and reactivity of H and the Al13 cluster using density functional concepts. Journal of Chemical Physics, 2003, 119, 5128-5141.	3.0	55
35	Regio- and Stereoselectivity of Captodative Olefins in 1,3-Dipolar Cycloadditions. A DFT/HSAB Theory Rationale for the Observed Regiochemistry of Nitrones. Journal of Organic Chemistry, 2001, 66, 1252-1263.	3.2	72
36	A Hardâ^'Soft Acidâ^'Base and DFT Analysis of Singletâ^'Triplet Gaps and the Addition of Singlet Carbenes to Alkenes. Journal of Organic Chemistry, 1999, 64, 7061-7066.	3.2	94

#	Article	lF	CITATIONS
37	1,3-Dipolar Cycloaddition Reactions:Â A DFT and HSAB Principle Theoretical Model. Journal of Physical Chemistry A, 1998, 102, 6292-6296.	2.5	91
38	The Basicity of p-Substituted Phenolates and the Eliminationâ^'Substitution Ratio in p-Nitrophenethyl Bromide:  A HSAB Theoretical Study. Journal of Organic Chemistry, 1998, 63, 5774-5778.	3.2	38
39	One-Step Synthesis and Highly Regio- and Stereoselective Dielsâ°'Alder Cycloadditions of Novelexo-2-Oxazolidinone Dienes. Journal of Organic Chemistry, 1997, 62, 4105-4115.	3.2	40
40	Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint. Journal of the American Chemical Society, 1994, 116, 9298-9301.	13.7	282
41	The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint. The Journal of Physical Chemistry, 1994, 98, 4591-4593.	2.9	302
42	The Fukui function of an atom in a molecule: A criterion to characterize the reactive sites of chemical species. Journal of Chemical Sciences, 1994, 106, 183-193.	1.5	34
43	Relationship between energy and hardness differences. The Journal of Physical Chemistry, 1993, 97, 4059-4063.	2.9	120
44	Local softness and chemical reactivity of maleimide: nucleophilic addition. Computational and Theoretical Chemistry, 1992, 277, 81-86.	1.5	54
45	Nucleophilic Attacks on Maleic Anhydride: A Density Functional Theory Approach. , 1991, , 387-400.		5