
Francisco Méndez Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint. The Journal of Physical Chemistry, 1994, 98, 4591-4593.	2.9	302
2	Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint. Journal of the American Chemical Society, 1994, 116, 9298-9301.	13.7	282
3	Relationship between energy and hardness differences. The Journal of Physical Chemistry, 1993, 97, 4059-4063.	2.9	120
4	Synthesis of fullerenes. Journal of Physical Organic Chemistry, 2013, 26, 526-539.	1.9	101
5	A Hardâ^'Soft Acidâ^'Base and DFT Analysis of Singletâ^'Triplet Gaps and the Addition of Singlet Carbenes to Alkenes. Journal of Organic Chemistry, 1999, 64, 7061-7066.	3.2	94
6	1,3-Dipolar Cycloaddition Reactions:Â A DFT and HSAB Principle Theoretical Model. Journal of Physical Chemistry A, 1998, 102, 6292-6296.	2.5	91
7	Regio- and Stereoselectivity of Captodative Olefins in 1,3-Dipolar Cycloadditions. A DFT/HSAB Theory Rationale for the Observed Regiochemistry of Nitrones. Journal of Organic Chemistry, 2001, 66, 1252-1263.	3.2	72
8	Analysis of the bonding and reactivity of H and the Al13 cluster using density functional concepts. Journal of Chemical Physics, 2003, 119, 5128-5141.	3.0	55
9	Local softness and chemical reactivity of maleimide: nucleophilic addition. Computational and Theoretical Chemistry, 1992, 277, 81-86.	1.5	54
10	Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: The effect of charge distribution. Dalton Transactions, 2008, , 1233.	3.3	44
11	Highly regioselective radical alkylation of 3-substituted pyrroles. Tetrahedron Letters, 2007, 48, 4515-4518.	1.4	41
12	One-Step Synthesis and Highly Regio- and Stereoselective Dielsâ^'Alder Cycloadditions of Novelexo-2-Oxazolidinone Dienes. Journal of Organic Chemistry, 1997, 62, 4105-4115.	3.2	40
13	The Basicity of p-Substituted Phenolates and the Eliminationâ^'Substitution Ratio in p-Nitrophenethyl Bromide:  A HSAB Theoretical Study. Journal of Organic Chemistry, 1998, 63, 5774-5778.	3.2	38
14	Fukui Function as a Descriptor of the Imidazolium Protonated Cation Resonance Hybrid Structure. Organic Letters, 2004, 6, 1781-1783.	4.6	34
15	The Fukui function of an atom in a molecule: A criterion to characterize the reactive sites of chemical species. Journal of Chemical Sciences, 1994, 106, 183-193.	1.5	34
16	Chemical Reactivity of the Imidazole: A Semblance of Pyridine and Pyrrole?. Organic Letters, 2011, 13, 972-975.	4.6	32
17	Synthesis of carbon spheres by atmospheric pressure chemical vapor deposition from a serial of aromatic hydrocarbon precursors. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 78-85.	2.7	26
18	The Local HSAB Principle and Bond Dissociation Energy ofp-Substituted Phenol. Journal of Physical Chemistry A. 2003, 107, 5874-5875.	2.5	25

#	Article	IF	CITATIONS
19	Selectivity in 1,3-Dipolar Cycloadditions of β-Substituted Captodative Olefins – An Experimental and DFT Transition State Study. European Journal of Organic Chemistry, 2007, 2007, 2352-2364.	2.4	22
20	ls the Hydrogen Atomic Charge Representative of the Acidity of Parasubstituted Phenols?. Journal of Physical Chemistry A, 2003, 107, 4526-4530.	2.5	16
21	Oxazole as an Electron-Deficient Diene in the Diels–Alder Reaction. Organic Letters, 2011, 13, 6358-6361.	4.6	15
22	Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity. Molecules, 2017, 22, 427.	3.8	13
23	Influence of Fluorine Atoms and Aromatic Rings on the Acidity of Ethanol. Journal of Physical Chemistry A, 2009, 113, 10753-10758.	2.5	11
24	Deep Eutectic Solvent Choline Chloride/ <i>p</i> -toluenesulfonic Acid and Water Favor the Enthalpy-Driven Binding of Arylamines to Maleimide in Aza-Michael Addition. Journal of Organic Chemistry, 2021, 86, 223-234.	3.2	11
25	Chemical reactivity of hypervalent silicon compounds: The local hard and soft acids and bases principle viewpoint. Journal of Chemical Sciences, 2005, 117, 525-531.	1.5	9
26	Design and Synthesis of Anti-MRSA Benzimidazolylbenzene-sulfonamides. QSAR Studies for Prediction of Antibacterial Activity. Molecules, 2011, 16, 175-189.	3.8	8
27	The Diels-Alder Cycloaddition Reaction of Substituted Hemifullerenes with 1,3-Butadiene: Effect of Electron-Donating and Electron-Withdrawing Substituents. Molecules, 2016, 21, 200.	3.8	7
28	Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization. Molecules, 2013, 18, 2243-2254.	3.8	6
29	Understanding the Nucleophilic Character and Stability of the Carbanions and Alkoxides of 1-(9-Anthryl)ethanol and Derivatives. Molecules, 2013, 18, 10254-10265.	3.8	6
30	Nucleophilic Attacks on Maleic Anhydride: A Density Functional Theory Approach. , 1991, , 387-400.		5
31	"Synthesis of carbon nanomaterials by chemical vapor deposition method using green chemistry principles― , 2021, , 273-314.		5
32	Theoretical rate constant of methane oxidation from the conventional transition-state theory. Journal of Molecular Modeling, 2018, 24, 294.	1.8	4
33	Analysis of the Gas Phase Acidity of Substituted Benzoic Acids Using Density Functional Concepts. Molecules, 2020, 25, 1631.	3.8	4
34	Electrophilic Modulation of the Superoxide Anion Radical Scavenging Ability of Copper(II) Complexes with 4-Methyl Imidazole. Journal of Physical Chemistry A, 2021, 125, 2394-2401.	2.5	4
35	Nucleus-Independent Chemical Shift (NICS) as a Criterion for the Design of New Antifungal Benzofuranones. Molecules, 2021, 26, 5078.	3.8	4
36	Composite synthesis from carbon nanotubes and styrene oligomers, the functionalization and magnetic field effect in their properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 7461-7469.	2.2	4

#	Article	IF	CITATIONS
37	Dimerization of pentacyclopentacorannulene C30H10 as a strategy to produce C60H20 as a precursor for C60. RSC Advances, 2020, 10, 3689-3693.	3.6	3
38	Protophilicity index and protofelicity equalization principle: new measures of BrÃ,nsted-Lowry-Lewis acid–base interactions. Journal of Molecular Modeling, 2013, 19, 3961-3967.	1.8	2
39	Elimination vs Substitution Reaction. A Dichotomy between BrÃ,nsted–Lowry and Lewis Basicity. Organic Letters, 2015, 17, 767-769.	4.6	2
40	Effect of methyl substituents in the reactivity of methylxanthines. Journal of Molecular Modeling, 2018, 24, 331.	1.8	2
41	Stoichiometry, Association Constant, and Solvation Model of Chiral Hydroxyfuranones in the Presence of Pirkle's Alcohols. Spectroscopy Letters, 2011, 44, 168-175.	1.0	1
42	Hyperconjugation enhances electrophilic addition to monocyclic monoterpenes: a Fukui function perspective. Journal of Molecular Modeling, 2018, 24, 300.	1.8	1
43	Nucleophilic Attack at the Pyridine Nitrogen Atom in a Bis(imino)pyridine System: The Local Hard and Soft Acids and Bases Principle Perspective. Journal of the Mexican Chemical Society, 2017, 56, .	0.6	1
44	Theoretical study of the regioselective cyclization of enaminones in the construction of benzofurans and indoles. Journal of Molecular Modeling, 2016, 22, 116.	1.8	0
45	Green Synthesis of Symmetric Dimaleamic Acids from Dianilines and Maleic Anhydride: Behind New Bidentate Ligands for MOFs. Chemistry Proceedings, 2020, 3, .	0.1	Ο