Masahiro Terada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660263/publications.pdf

Version: 2024-02-01

164 papers 11,559 citations

50244 46 h-index 29127 104 g-index

198 all docs

198 docs citations

times ranked

198

4780 citing authors

#	Article	IF	CITATIONS
1	Chiral BrÃ,nsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. Journal of the American Chemical Society, 2004, 126, 5356-5357.	6.6	1,430
2	Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. Synthesis, 2010, 2010, 1929-1982.	1.2	1,186
3	Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chemical Communications, 2008, , 4097.	2.2	965
4	Organocatalytic Asymmetric Aza-Friedelâ^Crafts Alkylation of Furan. Journal of the American Chemical Society, 2004, 126, 11804-11805.	6.6	351
5	Enantioselective Friedelâ^'Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. Journal of the American Chemical Society, 2007, 129, 292-293.	6.6	330
6	Catalytic asymmetric glyoxylate-ene reaction: a practical access to .alphahydroxy esters in high enantiomeric purities. Journal of the American Chemical Society, 1990, 112, 3949-3954.	6.6	329
7	High Substrate/Catalyst Organocatalysis by a Chiral Brønsted Acid for an Enantioselective Aza-Ene-Type Reaction. Angewandte Chemie - International Edition, 2006, 45, 2254-2257.	7.2	254
8	Axially Chiral Guanidine as Enantioselective Base Catalyst for 1,4-Addition Reaction of 1,3-Dicarbonyl Compounds with Conjugated Nitroalkenes. Journal of the American Chemical Society, 2006, 128, 1454-1455.	6.6	237
9	Axially Chiral Guanidine as Highly Active and Enantioselective Catalyst for Electrophilic Amination of Unsymmetrically Substituted 1,3-Dicarbonyl Compounds. Journal of the American Chemical Society, 2006, 128, 16044-16045.	6.6	228
10	Asymmetric glyoxylate-ene reaction catalyzed by chiral titanium complexes: a practical access to .alphahydroxy esters in high enantiomeric purities. Journal of the American Chemical Society, 1989, 111, 1940-1941.	6.6	210
11	Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Carbon–Carbon Bond Forming Reactions. Bulletin of the Chemical Society of Japan, 2010, 83, 101-119.	2.0	203
12	Enantioselective Direct Aldol-Type Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral BrÃ, nsted Acid Catalyst. Journal of the American Chemical Society, 2009, 131, 3430-3431.	6.6	195
13	Chiral BrÃ, nsted Acid-Catalyzed Tandem Aza-Ene Type Reaction/Cyclization Cascade for a One-Pot Entry to Enantioenriched Piperidines. Journal of the American Chemical Society, 2007, 129, 10336-10337.	6.6	194
14	Relay Catalysis by a Metal-Complex/Brønsted Acid Binary System in a Tandem Isomerization/Carbonâ~Carbon Bond Forming Sequence. Journal of the American Chemical Society, 2008, 130, 14452-14453.	6.6	172
15	Chiral Phosphoric Acid atalyzed Enantioselective Azaâ€Friedel–Crafts Reaction of Indoles. Advanced Synthesis and Catalysis, 2007, 349, 1863-1867.	2.1	154
16	Enantioselective Activation of Aldehydes by Chiral Phosphoric Acid Catalysts in an Azaâ€eneâ€type Reaction between Glyoxylate and Enecarbamate. Angewandte Chemie - International Edition, 2008, 47, 4122-4125.	7.2	152
17	Enantioselective Carbon-Carbon Bond Forming Reactions Catalyzed by Chiral Phosphoric Acid Catalysts. Current Organic Chemistry, 2011, 15, 2227-2256.	0.9	150
18	Asymmetric Direct Vinylogous Aldol Reaction of Furanone Derivatives Catalyzed by an Axially Chiral Guanidine Base. Angewandte Chemie - International Edition, 2010, 49, 1858-1861.	7.2	145

#	Article	IF	CITATIONS
19	Double Bond Isomerization/Enantioselective Aza-Petasisâ^Ferrier Rearrangement Sequence as an Efficient Entry to Anti- and Enantioenriched β-Amino Aldehydes. Journal of the American Chemical Society, 2009, 131, 6354-6355.	6.6	137
20	Chiral Silver Phosphate Catalyzed Transformation of <i>ortho</i> â€Alkynylaryl Ketones into 1 <i>H</i> â€Asochromene Derivatives through an Intramolecularâ€Cyclization/Enantioselectiveâ€Reduction Sequence. Angewandte Chemie - International Edition, 2014, 53, 235-239.	7.2	136
21	Enantioselective 1,4-Addition Reactions of Diphenyl Phosphite to Nitroalkenes Catalyzed by an Axially Chiral Guanidine. Journal of the American Chemical Society, 2007, 129, 14112-14113.	6.6	132
22	Copper-Catalyzed Tandem [2,3]-Rearrangement and 6π-3-Azatriene Electrocyclization in (<i>E</i>) <i>O</i> -Propargylic α,β-Unsaturated Oximes. Journal of the American Chemical Society, 2010, 132, 7884-7886.	6.6	132
23	Development of a Chiral Bis(guanidino)iminophosphorane as an Uncharged Organosuperbase for the Enantioselective Amination of Ketones. Journal of the American Chemical Society, 2013, 135, 15306-15309.	6.6	130
24	Activation of Hemiaminal Ethers by Chiral Brønsted Acids for Facile Access to Enantioselective Twoâ€Carbon Homologation Using Enecarbamates. Angewandte Chemie - International Edition, 2009, 48, 2553-2556.	7.2	108
25	Chiral Phosphoric Acid-Governed Anti-Diastereoselective and Enantioselective Hetero-Dielsâ-'Alder Reaction of Glyoxylate. Journal of the American Chemical Society, 2009, 131, 12882-12883.	6.6	101
26	Relay Catalysis Using a Rhodium Complex/Chiral BrÃ, nsted Acid Binary System: Enantioselective Reduction of a Carbonyl Ylide as the Reactive Intermediate. Angewandte Chemie - International Edition, 2012, 51, 2093-2097.	7.2	94
27	Design of Chiral Bis-phosphoric Acid Catalyst Derived from (<i>>R</i> >)-3,3′-Di(2-hydroxy-3-arylphenyl)binaphthol: Catalytic Enantioselective Diels–Alder Reaction of α,β-Unsaturated Aldehydes with Amidodienes. Journal of the American Chemical Society, 2011, 133, 19294-19297.	6.6	93
28	Synthesis of Azepine Derivatives by Rhodiumâ€Catalyzed Tandem 2,3â€Rearrangement/Heterocyclization. Angewandte Chemie - International Edition, 2012, 51, 10816-10819.	7.2	82
29	Chiral BrÃ, nsted Acid Catalyzed Stereoselective Addition of Azlactones to 3â€ V inylindoles for Facile Access to Enantioenriched Tryptophan Derivatives. Angewandte Chemie - International Edition, 2011, 50, 12586-12590.	7.2	79
30	Enantioselective Direct Vinylogous Michael Addition of Functionalized Furanones to Nitroalkenes Catalyzed by an Axially Chiral Guanidine Base. Organic Letters, 2011, 13, 2026-2029.	2.4	74
31	Construction of Vicinal Quaternary Stereogenic Centers by Enantioselective Direct Mannichâ€Type Reaction Using a Chiral Bis(guanidino)iminophosphorane Catalyst. Angewandte Chemie - International Edition, 2016, 55, 4734-4737.	7.2	73
32	Enantioselective Henry (nitroaldol) reaction catalyzed by axially chiral guanidines. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3895-3898.	1.0	69
33	Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide. Chemical Communications, 2014, 50, 2883-2885.	2.2	67
34	Chiral Anion Catalysis in the Enantioselective 1,4â∈Reduction of the 1â∈Benzopyrylium Ion as a Reactive Intermediate. Chemistry - A European Journal, 2013, 19, 13658-13662.	1.7	64
35	Axially Chiral Guanidines as Efficient Bronsted Base Catalysts for Enantioselective Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1159-1168.	0.0	60
36	Highly Stereoselective [4+2] Cycloaddition of Azlactones to β,γâ€Unsaturated αâ€Ketoesters Catalyzed by an Axially Chiral Guanidine Base. Chemistry - A European Journal, 2011, 17, 1760-1763.	1.7	58

#	Article	IF	CITATIONS
37	Intramolecular Cyclization of Alkynyl Î \pm -Ketoanilide Utilizing [1,2]-Phospha-Brook Rearrangement Catalyzed by Phosphazene Base. Organic Letters, 2014, 16, 3528-3531.	2.4	57
38	BrÃ, nsted Base Catalyzed [2,3]-Wittig/Phospha-Brook Tandem Rearrangement Sequence. Organic Letters, 2013, 15, 4568-4571.	2.4	56
39	Secondary stereocontrolling interactions in chiral Brønsted acid catalysis: study of a Petasis–Ferrier-type rearrangement catalyzed by chiral phosphoric acids. Chemical Science, 2014, 5, 3515-3523.	3.7	55
40	Enantioselective Aza Michaelâ€Type Addition to Alkenyl Benzimidazoles Catalyzed by a Chiral Phosphoric Acid. Angewandte Chemie - International Edition, 2016, 55, 927-931.	7.2	55
41	Regioselective Transformation of <i>O</i> -Propargylic Arylaldoximes to Four-Membered Cyclic Nitrones by Copper-Catalyzed Skeletal Rearrangement. Organic Letters, 2011, 13, 3616-3619.	2.4	54
42	Enantioselective Addition of a 2â€Alkoxycarbonylâ€1,3â€dithiane to Imines Catalyzed by a Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie - International Edition, 2015, 54, 15836-15839.	7.2	54
43	Phosphazene base-catalyzed intramolecular cyclization for efficient synthesis of benzofurans via carbon–carbon bond formation. Chemical Communications, 2009, , 5248.	2.2	50
44	Synthesis of Phenanthrene Derivatives by Intramolecular Cyclization Utilizing the [1,2]â€Phosphaâ€Brook Rearrangement Catalyzed by a BrÃ,nsted Base. Chemistry - A European Journal, 2015, 21, 12577-12580.	1.7	49
45	Mechanistic Studies of Highly Enantio- and Diastereoselective Aza-Petasis–Ferrier Rearrangement Catalyzed by Chiral Phosphoric Acid. Journal of the American Chemical Society, 2014, 136, 7044-7057.	6.6	47
46	Molecular Design of a Chiral BrÃ,nsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Dielsâ€ ^d Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid–Monophosphoric Acid. Journal of the American Chemical Society, 2016, 138, 11353-11359.	6.6	47
47	Oxazepine Synthesis by Copperâ€Catalyzed Intermolecular Cascade Reactions between Oâ€Propargylic Oximes and Dipolarophiles. Angewandte Chemie - International Edition, 2013, 52, 7536-7539.	7.2	46
48	Copper-Catalyzed Skeletal Rearrangement of O-Propargylic Aryloximes into Four-Membered Cyclic Nitrones - Chirality Transfer and Mechanistic Insight. Synthesis, 2012, 44, 1542-1550.	1.2	45
49	Generation and Application of Homoenolate Equivalents Utilizing [1,2]â€Phosphaâ€Brook Rearrangement under Brønsted Base Catalysis. Chemistry - A European Journal, 2017, 23, 2769-2773.	1.7	43
50	Platinumâ€Catalyzed Multisubstituted Benzo[<i>b</i>)selenophene Synthesis. European Journal of Organic Chemistry, 2009, 2009, 5509-5512.	1.2	42
51	Hydrogen Bonds-Enabled Design of a <i>C</i> ₁ -Symmetric Chiral Brønsted Acid Catalyst. ACS Catalysis, 2016, 6, 949-956.	5.5	42
52	Chiral Phosphoric Acid Catalyzed Enantioselective Ring Expansion Reaction of 1,3-Dithiane Derivatives: Case Study of the Nature of Ion-Pairing Interaction. Journal of the American Chemical Society, 2018, 140, 2629-2642.	6.6	42
53	Copper-Catalyzed Domino [1,3]/[1,2] Rearrangement for the Efficient Synthesis of Multisubstituted <i>ortho</i> -Anisidines. Journal of the American Chemical Society, 2018, 140, 8629-8633.	6.6	42
54	Efficient Synthesis of Eightâ∈Membered Nitrogen Heterocycles from <i>O</i> à€Propargylic Oximes by Rhodiumâ€Catalyzed Cascade Reactions. Chemistry - A European Journal, 2014, 20, 10214-10219.	1.7	39

#	Article	IF	CITATIONS
55	Chiral BrÃ,nsted acid-catalyzed enantioselective Friedel–Crafts reaction of 2-methoxyfuran with aliphatic ketimines generated in situ. Chemical Science, 2016, 7, 1057-1062.	3.7	39
56	Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under BrÃ,nsted Base Catalysis: Synthesis of 1,3â€Oxazolidines with Quaternary Stereogenic Center. Angewandte Chemie - International Edition, 2018, 57, 6299-6303.	7.2	39
57	Br \tilde{A}_j nsted base-catalyzed three-component coupling reaction of \hat{I}_\pm -ketoesters, imines, and diethyl phosphite utilizing [1,2]-phospha-Brook rearrangement. Organic and Biomolecular Chemistry, 2016, 14, 4704-4711.	1.5	38
58	Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to gold-catalyzed cycloisomerization providing 2-aminofuran derivatives. Chemical Communications, 2016, 52, 12513-12516.	2.2	38
59	Synthesis of Tetrasubstituted Furans through One-Pot Formal [3 + 2] Cycloaddition Utilizing [1,2]-Phospha-Brook Rearrangement. Organic Letters, 2020, 22, 2105-2110.	2.4	38
60	Direct Enantioselective Amination of αâ€Ketoesters Catalyzed by an Axially Chiral Guanidine Base. Chemistry - A European Journal, 2011, 17, 9037-9041.	1.7	37
61	Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne–Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid. Journal of the American Chemical Society, 2016, 138, 11038-11043.	6.6	37
62	Cationic $\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene Copper-Catalyzed [1,3]-Alkoxy Rearrangement of $\langle i \rangle N \langle i \rangle$ Alkoxyanilines. Organic Letters, 2017, 19, 3059-3062.	2.4	37
63	Concerted [1,3]-Rearrangement in Cationic Cobalt-Catalyzed Reaction of <i>O</i> -(Alkoxycarbonyl)- <i>N</i> -arylhydroxylamines. Organic Letters, 2017, 19, 2194-2196.	2.4	36
64	Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral Brønsted Acids. Angewandte Chemie - International Edition, 2019, 58, 8458-8462.	7.2	36
65	Perfluorinated Aryls in the Design of Chiral Brønsted Acid Catalysts: Catalysis of Enantioselective [4 + 2] Cycloadditions and Ene Reactions of Imines with Alkenes by Chiral Mono-Phosphoric Acids with Perfluoroaryls. ACS Catalysis, 2016, 6, 1198-1204.	5.5	35
66	Enantioselective direct Mannich-type reactions of 2-benzylpyridine N-oxides catalyzed by chiral bis(guanidino)iminophosphorane organosuperbase. Chemical Science, 2018, 9, 4348-4351.	3.7	35
67	Organocatalytic Nucleophilic Substitution Reaction of <i>gem</i> -Difluoroalkenes with Ketene Silyl Acetals. Organic Letters, 2019, 21, 2277-2280.	2.4	34
68	Enantioselective Electrophilic Amination of αâ€Cyanothioacetates with Azodicarboxylates Catalyzed by an Axially Chiral Guanidine Base. Advanced Synthesis and Catalysis, 2009, 351, 2817-2821.	2.1	33
69	Skeletal Rearrangement of <i>O</i> â€Propargylic Formaldoximes by a Goldâ€Catalyzed Cyclization/Intermolecular Methylene Transfer Sequence. Angewandte Chemie - International Edition, 2015, 54, 7154-7157.	7.2	33
70	Enantioselective Protonation: Hydrophosphinylation of 1,1â€Vinyl Azaheterocycle <i>N</i> â€Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie - International Edition, 2021, 60, 1417-1422.	7.2	33
71	Metal-Free Chiral Phosphoric Acid or Chiral Metal Phosphate as Active Catalyst in the Activation of N-Acyl Aldimines. Synlett, 2011, 2011, 1255-1258.	1.0	31
72	Development of Chiral Ureates as Chiral Strong Brønsted Base Catalysts. Journal of the American Chemical Society, 2020, 142, 3724-3728.	6.6	31

#	Article	IF	CITATIONS
73	Ring Expansion of Epoxides under BrÃ,nsted Base Catalysis: Formal [3+2] Cycloaddition of β,γâ€Epoxy Esters with Imines Providing 2,4,5â€Trisubstituted 1,3â€Oxazolidines. Angewandte Chemie - International Edition, 2015, 54, 11240-11244.	7.2	30
74	Chiral Phosphoric Acid Catalyzed Diastereo- and Enantioselective Mannich-Type Reaction between Enamides and Thiazolones. Organic Letters, 2016, 18, 2521-2523.	2.4	29
75	Catalytic Performance of Nanoporous Metal Skeleton Catalysts for Molecular Transformations. ChemSusChem, 2019, 12, 2936-2954.	3.6	28
76	Synthesis of Bulky Aryl Group-substituted Chiral Bis(guanidino)iminophosphoranes as Uncharged Chiral Organosuperbase Catalysts. Australian Journal of Chemistry, 2014, 67, 1124.	0.5	27
77	Intramolecular addition of benzyl anion to alkyne utilizing [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. Organic and Biomolecular Chemistry, 2017, 15, 7277-7281.	1.5	27
78	Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]â€Phosphaâ€Brook Rearrangement under Brønsted Base Catalysis. Chemistry - A European Journal, 2018, 24, 15246-15253.	1.7	27
79	Organocatalytic Arylation of αâ€Ketoesters Based on Umpolung Strategy: Phosphazeneâ€Catalyzed S _N Ar Reaction Utilizing [1,2]â€Phosphaâ€Brook Rearrangement. Chemistry - A European Journal, 2018, 24, 13110-13113.	1.7	26
80	F ₁₀ BINOL-derived chiral phosphoric acid-catalyzed enantioselective carbonyl-ene reaction: theoretical elucidation of stereochemical outcomes. Chemical Science, 2019, 10, 1426-1433.	3.7	26
81	Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie - International Edition, 2020, 59, 7472-7477.	7.2	26
82	Asymmetric Epoxidation of a,b-Unsaturated Ketones with Hydrogen Peroxide Catalyzed by Axially Chiral Guanidine Base. Heterocycles, 2008, 76, 1049.	0.4	25
83	Enantioconvergent Substitution Reactions of Racemic Electrophiles by Organocatalysis. Chemistry - A European Journal, 2021, 27, 10215-10225.	1.7	25
84	Stereochemical Control by an Ester Group or Olefin Ligand in Platinumâ€Catalyzed Carboalkoxylation of 6â€(1â€Alkoxyethoxy)―hexâ€2â€ynoates. Advanced Synthesis and Catalysis, 2009, 351, 1089-1100.	2.1	24
85	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie - International Edition, 2018, 57, 13917-13921.	7.2	24
86	Cu-Catalyzed switchable synthesis of functionalized pyridines and pyrroles. Chemical Communications, 2018, 54, 9446-9449.	2.2	24
87	Br \tilde{A}_i nsted Base-Catalyzed Transformation of $\hat{l}\pm,\hat{l}^2$ -Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety. Organic Letters, 2020, 22, 5170-5175.	2.4	24
88	Phosphazene-catalyzed intramolecular cyclization of nitrogen-tethered alkynyl esters. Chemical Communications, 2013, 49, 10254.	2.2	23
89	Chiral BrÃ,nsted acid-catalyzed intramolecular S _N 2′ reaction for enantioselective construction of a quaternary stereogenic center. Chemical Science, 2018, 9, 5747-5757.	3.7	23
90	Synthesis of 1,6-dihydropyrimidines via copper-catalyzed multistep cascade reactions between O-propargylic aldoximes and isocyanates. Tetrahedron Letters, 2014, 55, 1178-1182.	0.7	21

#	Article	IF	CITATIONS
91	Brønsted base-catalyzed α-oxygenation of carbonyl compounds utilizing the [1,2]-phospha-Brook rearrangement. Organic Chemistry Frontiers, 2015, 2, 801-805.	2.3	21
92	Construction of Vicinal Quaternary Stereogenic Centers by Enantioselective Direct Mannichâ€√ype Reaction Using a Chiral Bis(guanidino)iminophosphorane Catalyst. Angewandte Chemie, 2016, 128, 4812-4815.	1.6	21
93	Enantioselective intramolecular cyclization of alkynyl esters catalyzed by a chiral Brønsted base. Chemical Communications, 2016, 52, 5726-5729.	2.2	21
94	Brønsted Base atalyzed Umpolung Intramolecular Cyclization of Alkynyl Imines. Chemistry - A European Journal, 2018, 24, 3998-4001.	1.7	21
95	Chiral Br \tilde{A}_i nsted Acid-Catalyzed Formal $\hat{I}\pm$ -Vinylation of Cyclopentanones for the Enantioselective Construction of Quaternary Carbon Centers. ACS Catalysis, 2019, 9, 6846-6850.	5.5	21
96	Chiral BrÃ,nsted Acid Catalyzed Enantioconvergent Propargylic Substitution Reaction of Racemic Secondary Propargylic Alcohols with Thiols. Chemistry - A European Journal, 2020, 26, 11124-11128.	1.7	21
97	Efficient synthetic protocol for substituted guanidines via copper(I)-mediated intermolecular amination of isothiourea derivatives. Journal of Organometallic Chemistry, 2007, 692, 545-549.	0.8	20
98	Br \tilde{A}_{j} nsted Base-Catalyzed Reductive Cyclization of Alkynyl \hat{I}_{\pm} -Iminoesters through Auto-Tandem Catalysis. Organic Letters, 2018, 20, 5309-5313.	2.4	19
99	Thermally Induced [2+2] Cycloadditions of (Benzyloxymethylene)cyclopropane with Alkylidenemalononitriles. European Journal of Organic Chemistry, 2007, 2007, 4479-4482.	1.2	18
100	Tandem Oxidative Ring Expansion for Synthesis of Dibenzocyclooctaphenanthrenes. Organic Letters, 2020, 22, 5121-5125.	2.4	18
101	Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. Bulletin of the Chemical Society of Japan, 2021, 94, 339-356.	2.0	18
102	N-Allenylnitrone acts as 2-azadiene in the Cu-catalyzed cascade reaction of O-propargylic oximes with azodicarboxylates. Organic Chemistry Frontiers, 2014, 1, 914-918.	2.3	17
103	Synthesis of Enantioenriched \hat{l}^3 -Amino- $\hat{l}\pm,\hat{l}^2$ -unsaturated Esters Utilizing Palladium-Catalyzed Rearrangement of Allylic Carbamates for Direct Application to Formal [3 + 2] Cycloaddition. Organic Letters, 2017, 19, 1682-1685.	2.4	17
104	Recent progress on catalytic $[1,3]$ -oxygen rearrangement reactions from nitrogen to carbon atoms. Tetrahedron Letters, 2019, 60, 689-698.	0.7	17
105	Synthesis of unsymmetrically substituted 2,2′-dihydroxy-1,1′-biaryl derivatives using organic-base-catalyzed Ferrier-type rearrangement as the key step. Chemical Communications, 2012, 48, 5781.	2.2	16
106	Synthetic Method for 2,2'â€Disubstituted Fluorinated Binaphthyl Derivatives and Application as Chiral Source in Design of Chiral Monoâ€Phosphoric Acid Catalyst. Chirality, 2015, 27, 464-475.	1.3	16
107	Chiral Phosphoric Acid-Catalyzed Enantioselective Phospha-Michael-Type Addition Reaction of Diarylphosphine Oxides with Alkenyl Benzimidazoles. Journal of Organic Chemistry, 2020, 85, 14802-14809.	1.7	15
108	Formal Fluorinative Ring Opening of 2-Benzoylpyrrolidines Utilizing [1,2]-Phospha-Brook Rearrangement for Synthesis of 2-Aryl-3-fluoropiperidines. Organic Letters, 2021, 23, 7894-7899.	2.4	15

#	Article	IF	Citations
109	Synthesis of <i>meta</i> -Substituted Anilines via Copper-Catalyzed [1,3]-Methoxy Rearrangement. Organic Letters, 2020, 22, 3794-3798.	2.4	14
110	Copper-Catalyzed Skeletal Rearrangements of $\langle i \rangle O \langle i \rangle$ -Propargylic Oximes via Cleavage of a Carbon-Oxygen Bond. Chemical Record, 2015, 15, 429-444.	2.9	13
111	Guanidine/Azole Binary System as an Efficient Catalyst for Morita–Baylis–Hillman Reaction. ChemCatChem, 2012, 4, 963-967.	1.8	12
112	Novel Methodology for the Efficient Synthesis of 3-Aryloxindoles: [1,2]-Phospha-Brook Rearrangement–Palladium-Catalyzed Cross-Coupling Sequence. Synlett, 2016, 27, 1848-1853.	1.0	12
113	Enantioselective Aza Michaelâ€√ype Addition to Alkenyl Benzimidazoles Catalyzed by a Chiral Phosphoric Acid. Angewandte Chemie, 2016, 128, 939-943.	1.6	12
114	Au-catalyzed skeletal rearrangement of <i>O</i> -propargylic oximes <i>via</i> N–O bond cleavage with the aid of a Br¸nsted base cocatalyst. Chemical Science, 2019, 10, 5283-5289.	3.7	12
115	Recent topics on synthesis of π-extended polycycles by cascade annulations. Tetrahedron Letters, 2020, 61, 151514.	0.7	12
116	Enantioselective Protonation: Hydrophosphinylation of 1,1â€Vinyl Azaheterocycle <i>N</i> â€Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie, 2021, 133, 1437-1442.	1.6	12
117	Synthesis of Indolizine Derivatives Utilizing [1,2]-Phospha-Brook Rearrangement/Cycloisomerization Sequence. Chemistry Letters, 2017, 46, 1020-1023.	0.7	11
118	Efficient Synthesis of Enantioenriched Isoxazoles by Chirality Transfer in Goldâ€Catalyzed Cyclization/Methyleneâ€Group Transfer Followed by Carbonyl Ene Reaction. European Journal of Organic Chemistry, 2017, 2017, 4375-4378.	1.2	11
119	Heterogeneous Catalytic Reduction of Tertiary Amides with Hydrosilanes Using Unsupported Nanoporous Gold Catalyst. Advanced Synthesis and Catalysis, 2019, 361, 4817-4824.	2.1	11
120	Gold-Catalyzed Cyclization/Intermolecular Methylene Transfer ÂSequence of O-Propargylic Oximes Derived from Glyoxylates. Synlett, 2019, 30, 393-396.	1.0	11
121	Oneâ€Pot Synthesis of Enantioenriched βâ€Amino Secondary Amides via an Enantioselective [4+2] Cycloaddition Reaction of Vinyl Azides with <i>N</i> à€Acyl Imines Catalyzed by a Chiral Brønsted Acid. Chemistry - A European Journal, 2020, 26, 8230-8234.	1.7	11
122	Pd-Catalyzed Indolization/ <i>peri</i> -C–H Annulation/ <i>N</i> -Dealkylation Cascade to Cyclopenta-Fused Acenaphtho[1,2- <i>b</i>) indole Scaffold. Organic Letters, 2021, 23, 9431-9435.	2.4	11
123	Skeletal Rearrangement of <i>O</i> àêPropargylic Formaldoximes by a Goldâ€Catalyzed Cyclization/Intermolecular Methylene Transfer Sequence. Angewandte Chemie, 2015, 127, 7260-7263.	1.6	10
124	Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under BrÃ,nsted Base Catalysis: Synthesis of 1,3-Oxazolidines with Quaternary Stereogenic Center. Angewandte Chemie, 2018, 130, 6407-6411.	1.6	10
125	Intermolecular Oxidative Friedel–Crafts Reaction Triggered Ring Expansion Affording 9,10-Diarylphenanthrenes. Organic Letters, 2020, 22, 8920-8924.	2.4	10
126	Enantioselective hydrophosphinylation of 1-alkenylphosphine oxides catalyzed by chiral strong Br¸nsted base. Organic and Biomolecular Chemistry, 2020, 18, 7814-7817.	1.5	9

#	Article	IF	CITATIONS
127	Pdâ€Catalyzed Consecutive Câ^'Hâ€Arylationâ€Triggered Cyclotrimerization: Synthesis of Starâ€Shaped Benzotristhiazoles and Benzotrisoxazoles. Chemistry - A European Journal, 2018, 24, 9041-9050.	1.7	8
128	Bis-phosphoric Acid Derived from BINOL Dimer as a Chiral Brønsted Acid Catalyst for Enantioselective Transformations. Chemistry Letters, 2019, 48, 260-263.	0.7	8
129	Mechanism and Origin of Stereoselectivity in Chiral Phosphoric Acidâ€Catalyzed Aldolâ€Type Reactions of Azlactones with Vinyl Ethers. Chemistry - A European Journal, 2020, 26, 3364-3372.	1.7	8
130	Synthesis of diarylalkanes through an intramolecular/intermolecular addition sequence by auto-tandem catalysis with strong BrÃ,nsted base. Chemical Communications, 2020, 56, 10894-10897.	2.2	8
131	Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie, 2020, 132, 7542-7547.	1.6	8
132	BrÃ,nsted Baseâ€Catalyzed Formal Reductive [3+2] Annulation of 4,4,4â€Trifluorocrotonate and αâ€Iminoketones. Chemistry - A European Journal, 2021, 27, 585-588.	1.7	8
133	Cu-Catalyzed [1,3]-Alkoxy Rearrangement/Diels–Alder Cascade Reactions via in Situ Generation of Functionalized <i>ortho-</i> Quinol Imines. Organic Letters, 2021, 23, 4127-4132.	2.4	8
134	Study of Stereocontrolling Elements in Chiral Phosphoric Acid Catalyzed Addition Reaction of Vinylindoles with Azlactones. Synlett, 2016, 27, 581-585.	1.0	7
135	Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral Brønsted Acids. Angewandte Chemie, 2019, 131, 8546-8550.	1.6	7
136	Chiral Phosphoric Acid Catalyzed Enantioselective $[4+2]$ Cycloaddition Reaction of \hat{l}_{\pm} -Fluorostyrenes with Imines. Organic Letters, 2020, 22, 8957-8961.	2.4	7
137	Nonâ€Enzymatic Hybrid Catalysis for Stereoconversion of <scp>l</scp> â€Amino Acid Derivatives to <scp>d</scp> â€Isomers. Asian Journal of Organic Chemistry, 2020, 9, 561-565.	1.3	7
138	Dynamic parallel kinetic resolution of \hat{l}_{\pm} -ferrocenyl cation initiated by chiral Br \tilde{A} ,nsted acid catalyst. Chemical Science, 2021, 12, 10306-10312.	3.7	7
139	Consecutive Oâ^'S/Nâ^'S Bond Cleavage in Goldâ€Catalyzed Rearrangement Reactions of Alkynyl <i>N</i> â€Sulfinylimines. Angewandte Chemie - International Edition, 2021, 60, 12248-12252.	7.2	7
140	Catalytic Enantioselective Allylation of Acetylenic Aldehydes by Chiral Phosphoric Acid/Transition Metal Cooperative Catalysis: Formal Synthesis of Fostriecin. Organic Letters, 2021, 23, 3767-3771.	2.4	7
141	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie, 2018, 130, 14113-14117.	1.6	6
142	Formal Umpolung Addition of Phosphites to 2â€Azaaryl Ketones under Chiral BrÃ,nsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]â€Phosphaâ€Brook Rearrangement. Chemistry - A European Journal, 2022, 28, .	1.7	6
143	Synthesis of Trisubstituted Allenamides Utilizing 1,2-Rearrangement of Dialkoxyphosphoryl Moiety under Brønsted Base Catalysis. Chemistry Letters, 2019, 48, 1164-1167.	0.7	5
144	Efficient Synthesis of O-tert-Propargylic Oximes via Nicholas Reaction. Synthesis, 2020, 52, 3461-3465.	1.2	5

#	Article	IF	CITATIONS
145	Copper-catalyzed [1,3]-alkoxy rearrangement for the selective synthesis of polycyclic <i>ortho</i> -aminoarenol derivatives. Organic Chemistry Frontiers, 2021, 8, 6390-6394.	2.3	5
146	Radical addition reaction between chromenols and toluene derivatives initiated by Brønsted acid catalyst under light irradiation. Organic Chemistry Frontiers, 2021, 8, 4153-4159.	2.3	5
147	Development of chiral bisphosphoric acid/boronic acid co-catalyst system for enantioselective SN2' reaction. Tetrahedron, 2021, 98, 132412.	1.0	5
148	Chiral BrÃ,nsted Acid Catalyzed Enantioconvergent Synthesis of Chiral Tetrahydrocarbazoles with Allenylsilanes from Racemic Indolylmethanols. Chemistry Letters, 2022, 51, 391-394.	0.7	5
149	Synthesis of 2,2â€Disubstituted 2 <i>H</i> â€Chromenes through Carbonâ€Carbon Bond Formation Utilizing a [1,2]â€Phosphaâ€Brook Rearrangement under Brønsted Base Catalysis. Chemistry - A European Journal, 2022, 28, .	1.7	5
150	Highly Enantioselective Carbonyl-Ene Reaction Catalyzed by Chiral Titanium Complexes: Toward Structural Elucidation of Catalytically Active Species. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 748-760.	0.0	4
151	Chiral strong $Br\tilde{A}_{j}$ nsted acid-catalyzed enantioselective addition reaction of simple olefins with ethyl glyoxylate. Organic Chemistry Frontiers, 2020, 7, 1383-1387.	2.3	4
152	Consecutive Oâ^'S/Nâ^'S Bond Cleavage in Goldâ€Catalyzed Rearrangement Reactions of Alkynyl <i>N</i> â€Sulfinylimines. Angewandte Chemie, 2021, 133, 12356-12360.	1.6	4
153	BrÃ, nsted Base-Catalyzed Conjugate Addition of \hat{l}^2 -Acylvinyl Anion Equivalents to \hat{l}^2 -Unsaturated Ketones. Synlett, 0, 0, .	1.0	4
154	Exo â€Cyclization: Intermolecular Methylene Transfer Sequence in Auâ€Catalyzed Reactions of Oâ€Homopropargylic Oximes. Chemistry - A European Journal, 2020, 26, 15816-15820.	1.7	3
155	Enantioselective Transformations Catalyzed by Chiral Br^ ^oslash;nsted Acids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 480-490.	0.0	3
156	Rapid Access to Nitrogenous Heterobicycles via Rh ^{III} atalyzed Isomerization from Alkynes to Allenes. Chemistry - A European Journal, 2017, 23, 7686-7688.	1.7	2
157	Ï€-Lewis Acidic Metal-Catalyzed Skeletal Rearrangement Reactions of <i>O</i> -Propargylic Oximes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 971-981.	0.0	2
158	Cationic cobalt-catalyzed [1,3]-rearrangement of N-alkoxycarbonyloxyanilines. Beilstein Journal of Organic Chemistry, 2018, 14, 1972-1979.	1.3	1
159	Novel Transformations Utilizing [1,2]-Phospha-Brook Rearrangement Under BrÃnsted Base Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 151-163.	0.0	1
160	Applications of Axially Chiral Organocatalysts. , 2019, , 99-147.		1
161	Br $ ilde{A}_i$ nsted base-catalyzed 1,2-addition/[1,2]-phospha-Brook rearrangement sequence providing functionalized phosphonates. Organic and Biomolecular Chemistry, 2022, 20, 2863-2866.	1.5	1
162	Gold-Catalyzed Skeletal Rearrangement Reactions of O-Propargylic and O-Homopropargylic Oximes. Heterocycles, 2022, 104, 1535.	0.4	1

#	Article	IF	CITATIONS
163	Frontispiz: Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie, 2020, 132, .	1.6	O
164	Frontispiece: Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0