Songlin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660167/publications.pdf

Version: 2024-02-01

40 papers

3,271 citations

236833 25 h-index 315616 38 g-index

42 all docs 42 docs citations

42 times ranked 2957 citing authors

#	Article	IF	CITATIONS
1	Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electronic Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	20
2	Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat, 2022, 4, .	6.8	89
3	Reversible Hydration Composite Films for Evaporative Perspiration Control and Heat Stress Management. Small, 2022, 18, e2107636.	5.2	15
4	Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electronic Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	2
5	Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials, 2021, 31, 2010962.	7.8	169
6	Leveraging triboelectric nanogenerators for bioengineering. Matter, 2021, 4, 845-887.	5.0	192
7	Piezoelectric Textiles: Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170136.	7.8	6
8	Tailoring Ti3CNT MXene via an acid molecular scissor. Nano Energy, 2021, 85, 106007.	8.2	36
9	Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding. Nano-Micro Letters, 2021, 13, 190.	14.4	28
10	Solar-Driven Gas-Phase Moisture to Hydrogen with Zero Bias. ACS Nano, 2021, 15, 19119-19127.	7.3	16
11	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	8.2	172
12	Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano, 2020, 14, 9282-9319.	7.3	89
13	Largely boosted methanol electrooxidation using ionic liquid/PdCu aerogels <i>via</i> interface engineering. Materials Horizons, 2020, 7, 2407-2413.	6.4	36
14	Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosensors and Bioelectronics, 2020, 155, 112064.	5.3	233
15	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	13.1	513
16	Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano, 2020, 14, 9050-9058.	7.3	88
17	Continuous Synthesis of Double-Walled Carbon Nanotubes with Water-Assisted Floating Catalyst Chemical Vapor Deposition. Nanomaterials, 2020, 10, 365.	1.9	26
18	A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter, 2020, 2, 896-907.	5.0	310

#	Article	IF	Citations
19	Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano, 2020, 14, 6067-6075.	7.3	271
20	Thermogalvanic Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy Harvesting. Nano Letters, 2020, 20, 3791-3797.	4.5	154
21	Promoting Energy Efficiency via a Selfâ€Adaptive Evaporative Cooling Hydrogel. Advanced Materials, 2020, 32, e1907307.	11.1	151
22	Lightweight carbon nanotube surface thermal shielding for carbon fiber/bismaleimide composites. Carbon, 2019, 153, 320-329.	5.4	27
23	Carbon fibers from polyacrylonitrile/cellulose nanocrystal nanocomposite fibers. Carbon, 2019, 145, 764-771.	5.4	41
24	Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon, 2019, 146, 224-231.	5.4	75
25	A Highly Stretchable Polyacrylonitrile Elastomer with Nanoreservoirs of Lubricant Using Cyano-Silver Complexes. Nano Letters, 2019, 19, 3871-3877.	4.5	21
26	Carbon Nanotubes and Their Assemblies: Applications in Electromagnetic Interference Shielding. , 2019, , 335-357.		2
27	Carbonâ€Nanotubeâ€Based Electrical Conductors: Fabrication, Optimization, and Applications. Advanced Electronic Materials, 2019, 5, 1800811.	2.6	72
28	Stabilization Study of Polyacrylonitrile/Cellulose Nanocrystals Composite Fibers. ACS Applied Polymer Materials, 2019, 1, 1015-1021.	2.0	12
29	Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon, 2019, 144, 628-638.	5.4	86
30	Effect of interfacial coating and testing conditions on the flexural performance of carbon woven fibre-reinforced polyamide laminates. Plastics, Rubber and Composites, 2019, 48, 57-65.	0.9	4
31	Porous Halide Perovskite–Polymer Nanocomposites for Explosive Detection with a High Sensitivity. Advanced Materials Interfaces, 2019, 6, 1801686.	1.9	22
32	Roll-to-roll continuous carbon nanotube sheets with high electrical conductivity. RSC Advances, 2018, 8, 12692-12700.	1.7	20
33	Recent Advances on 3D Printing Technique for Thermalâ€Related Applications. Advanced Engineering Materials, 2018, 20, 1700876.	1.6	40
34	Effect of trigger on crashworthiness of unidirectional carbon fibre reinforced polyamide 6 composites. Plastics, Rubber and Composites, 2018, 47, 208-220.	0.9	11
35	High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27171-27177.	4.0	23
36	Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon, 2017, 125, 649-658.	5.4	46

SONGLIN ZHANG

#	Article	lF	CITATION
37	Direct Printing of Thermal Management Device Using Lowâ€Cost Composite Ink. Macromolecular Materials and Engineering, 2017, 302, 1700135.	1.7	35
38	Stepâ€byâ€Step Strategy for Constructing Multilayer Structured Coatings toward Highâ€Efficiency Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2016, 3, 1500476.	1.9	70
39	Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding. Fibers and Polymers, 2015, 16, 2158-2164.	1.1	48
40	Atomic Resolution Imaging and Analysis of Microstructures and Interface of Aligned Carbon Nanotube Composites., 0,,.		0