Winston Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Cardiovascular Research, 2022, 118, 517-530.	3.8	27
2	Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovascular Research, 2021, 117, 694-711.	3.8	10
3	Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxidants and Redox Signaling, 2020, 32, 1135-1149.	5.4	42
4	Mechanisms underlying diabetic cardiomyopathy: From pathophysiology to novel therapeutic targets. Conditioning Medicine, 2020, 3, 82-97.	1.3	3
5	INDUCED PLURIPOTENT STEM CELLS FOR MODELLING ENERGETIC ALTERATIONS IN HYPERTROPHIC CARDIOMYOPATHY. Conditioning Medicine, 2019, 2, 142-151.	1.3	3
6	Association of Cardiomyopathy With <i>MYBPC3</i> D389V and <i>MYBPC3^{Δ25bp}</i> Intronic Deletion in South Asian Descendants. JAMA Cardiology, 2018, 3, 481.	6.1	31
7	Construction of a vascularized hydrogel for cardiac tissue formation in a porcine model. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e2029-e2038.	2.7	11
8	ldentification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. European Heart Journal, 2018, 39, 1446-1455.	2.2	100
9	Fatty acid metabolism driven mitochondrial bioenergetics promotes advanced developmental phenotypes in human induced pluripotent stem cell derived cardiomyocytes. International Journal of Cardiology, 2018, 272, 288-297.	1.7	37
10	The KCNH2-IVS9-28A/G mutation causes aberrant isoform expression and hERG trafficking defect in cardiomyocytes derived from patients affected by Long QT Syndrome type 2. International Journal of Cardiology, 2017, 240, 367-371.	1.7	28
11	Acetylated Signal Transducer and Activator of Transcription 3 Functions as Molecular Adaptor Independent of Transcriptional Activity During Human Cardiogenesis. Stem Cells, 2017, 35, 2129-2137.	3.2	7
12	ErbB Receptor Tyrosine Kinase: A Molecular Switch Between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells. Stem Cells, 2016, 34, 2461-2470.	3.2	11
13	ErbB4 Activated p38γ MAPK Isoform Mediates Early Cardiogenesis Through NKx2.5 in Human Pluripotent Stem Cells. Stem Cells, 2016, 34, 288-298.	3.2	21
14	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research― Basic Research in Cardiology, 2016, 111, 69.	5.9	41
15	Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Scientific Reports, 2016, 6, 25333.	3.3	130
16	Myocardial Telocytes: A New Player in Electric Circuitry of the Heart. Advances in Experimental Medicine and Biology, 2016, 913, 241-251.	1.6	8
17	iPSCâ€derived human cardiac progenitor cells improve ventricular remodelling <i>via</i> angiogenesis and interstitial networking of infarcted myocardium. Journal of Cellular and Molecular Medicine, 2016, 20, 323-332.	3.6	32
18	Comparative Myocardial Deformation in 3 Myocardial Layers in Mice by Speckle Tracking Echocardiography. BioMed Research International, 2015, 2015, 1-8.	1.9	10

WINSTON SHIM

#	Article	IF	CITATIONS
19	Arsenic and the Cardiovascular System. , 2015, , 459-491.		3
20	Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2015, 6, 39.	5.5	82
21	Molecular pathogenesis of Marfan syndrome. International Journal of Cardiology, 2015, 187, 585-591.	1.7	55
22	Evaluation of Sarcomeric Organization in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2015, 1299, 161-166.	0.9	2
23	Electrotonic Coupled Metabolic Purification of Chick Cardiomyocytes. Methods in Molecular Biology, 2015, 1299, 167-175.	0.9	1
24	A Systemic Evaluation of Cardiac Differentiation from mRNA Reprogrammed Human Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e103485.	2.5	28
25	Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovascular Research, 2014, 102, 497-506.	3.8	107
26	<scp>iPSC</scp> â€derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium. Journal of Cellular and Molecular Medicine, 2014, 18, 1644-1654.	3.6	42
27	Electrophysiology of human cardiac atrial and ventricular telocytes. Journal of Cellular and Molecular Medicine, 2014, 18, 355-362.	3.6	64
28	Phasic modulation of Wnt signaling enhances cardiac differentiation in human pluripotent stem cells by recapitulating developmental ontogeny. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2394-2402.	4.1	28
29	Evaluation of the Cardiotoxicity of Mitragynine and Its Analogues Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2014, 9, e115648.	2.5	56
30	Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. European Heart Journal, 2013, 34, 1122-1133.	2.2	197
31	A Simple Protocol for the Generation of Cardiomyocytes from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 1307, 379-383.	0.9	4
32	Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. International Journal of Cardiology, 2013, 168, 5277-5286.	1.7	155
33	Critical path in cardiac stem cell therapy: an update on cell delivery. Cytotherapy, 2013, 15, 399-415.	0.7	13
34	Ontogenic development of cardiomyocytes derived from transgene-free human induced pluripotent stem cells and its homology with human heart. Life Sciences, 2013, 92, 63-71.	4.3	13
35	Functional Morphometric Analysis in Cellular Behaviors: Shape and Size Matter. Advanced Healthcare Materials, 2013, 2, 1188-1197.	7.6	39
36	Pharmacoelectrophysiology of Viral-Free Induced Pluripotent Stem Cell–Derived Human Cardiomyocytes. Toxicological Sciences, 2013, 131, 458-469.	3.1	55

WINSTON SHIM

#	Article	IF	CITATION
37	Hydrogen sulphide suppresses human atrial fibroblast proliferation and transformation to myofibroblasts. Journal of Cellular and Molecular Medicine, 2013, 17, 1345-1354.	3.6	49
38	Cardiac Stem Cell Therapy: Stemness or Commitment?. Cell Transplantation, 2013, 22, 1-14.	2.5	14
39	Identification and Characterization of Calcium Sparks in Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e55266.	2.5	33
40	Hemodynamic Contribution of Stem Cell Scaffolding in Acute Injured Myocardium. Tissue Engineering - Part A, 2012, 18, 1652-1663.	3.1	30
41	One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. Stem Cell Research, 2012, 9, 87-100.	0.7	81
42	Hydrogen Sulfide Suppresses Outward Rectifier Potassium Currents in Human Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2012, 7, e50641.	2.5	16
43	G-CSF administration in acute myocardial infarction: what is the best timing? Reply. Cardiovascular Research, 2011, 91, 181-182.	3.8	0
44	G-CSF for stem cell therapy in acute myocardial infarction: friend or foe?. Cardiovascular Research, 2011, 89, 20-30.	3.8	45
45	Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovascular Research, 2011, 91, 577-586.	3.8	88
46	Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers. Heart Failure Reviews, 2010, 15, 1-14.	3.9	33
47	Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation, 2010, 79, 260-271.	1.9	37