List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for Skeletal Progenitor Cells in the Degenerate Human Intervertebral Disc. Spine, 2007, 32, 2537-2544.	1.0	256
2	Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. Journal of Gene Medicine, 1999, 1, 121-133.	1.4	242
3	Exogenously Regulated Stem Cell-Mediated Gene Therapy for Bone Regeneration. Molecular Therapy, 2001, 3, 449-461.	3.7	240
4	Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. Journal of Clinical Investigation, 2006, 116, 940-952.	3.9	221
5	Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood, 2004, 103, 2942-2949.	0.6	219
6	Osteogenic Differentiation of Noncultured Immunoisolated Bone Marrow-Derived CD105+Cells. Stem Cells, 2006, 24, 1728-1737.	1.4	215
7	Short-Term BMP-2 Expression Is Sufficient for In Vivo Osteochondral Differentiation of Mesenchymal Stem Cells. Stem Cells, 2004, 22, 74-85.	1.4	212
8	Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. Journal of Gene Medicine, 2001, 3, 240-251.	1.4	208
9	Imaging Transgene Expression in Live Animals. Molecular Therapy, 2001, 4, 239-249.	3.7	167
10	Estrogen modulates estrogen receptor ? and ? expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. Journal of Cellular Biochemistry, 2001, 81, 144-155.	1.2	150
11	Review: Gene- and Stem Cell–Based Therapeutics for Bone Regeneration and Repair. Tissue Engineering, 2007, 13, 1135-1150.	4.9	148
12	Nucleofection-Based Ex Vivo Nonviral Gene Delivery to Human Stem Cells as a Platform for Tissue Regeneration. Tissue Engineering, 2006, 12, 877-889.	4.9	138
13	Estrogens Activate Bone Morphogenetic Protein-2 Gene Transcription in Mouse Mesenchymal Stem Cells. Molecular Endocrinology, 2003, 17, 56-66.	3.7	134
14	Gene Therapy Platform for Bone Regeneration Using an Exogenously Regulated, AAV-2-Based Gene Expression System. Molecular Therapy, 2004, 9, 587-595.	3.7	114
15	Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. Journal of Cellular Biochemistry, 2002, 86, 461-474.	1.2	113
16	Stem Cell Therapy for Osteoporosis. Current Osteoporosis Reports, 2014, 12, 41-47.	1.5	108
17	Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Translational Medicine, 2016, 5, 1447-1460.	1.6	106
18	In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Science Translational Medicine, 2017, 9, .	5.8	105

#	Article	IF	CITATIONS
19	Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis. Metabolism: Clinical and Experimental, 1993, 42, 69-74.	1.5	104
20	Structural Bone Allograft Combined with Genetically Engineered Mesenchymal Stem Cells as a Novel Platform for Bone Tissue Engineering. Tissue Engineering, 2007, 13, 435-445.	4.9	103
21	Nonvirally Engineered Porcine Adipose Tissue-Derived Stem Cells: Use in Posterior Spinal Fusion. Stem Cells, 2008, 26, 1056-1064.	1.4	101
22	Expression of helix-loop-helix regulatory genes during differentiation of mouse osteoblastic cells. Journal of Bone and Mineral Research, 1992, 7, 1131-1138.	3.1	96
23	Circadian Oscillation of Gene Expression in Murine Calvarial Bone. Journal of Bone and Mineral Research, 2007, 22, 357-365.	3.1	91
24	Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein—2. Journal of Neurosurgery: Spine, 2005, 3, 47-52.	0.9	89
25	Long-term intracaval calcium infusion therapy in end-organ resistance to 1,25-dihydroxyvitamin D. American Journal of Medicine, 1987, 83, 984-990.	0.6	83
26	Gene-Modified Adult Stem Cells Regenerate Vertebral Bone Defect in a Rat Model. Molecular Pharmaceutics, 2011, 8, 1592-1601.	2.3	83
27	Targeted Gene-and-host Progenitor Cell Therapy for Nonunion Bone Fracture Repair. Molecular Therapy, 2011, 19, 53-59.	3.7	83
28	The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials, 2009, 30, 4639-4648.	5.7	82
29	Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. Journal of Controlled Release, 2016, 223, 157-164.	4.8	82
30	The T-box transcription factor <i>Brachyury</i> mediates cartilage development in mesenchymal stem cell line C3H10T1/2. Journal of Cell Science, 2002, 115, 769-781.	1.2	80
31	Gene therapy approaches to regenerating bone. Advanced Drug Delivery Reviews, 2012, 64, 1320-1330.	6.6	77
32	Genetically modified cells in regenerative medicine and tissue engineeringâ~†. Advanced Drug Delivery Reviews, 2010, 62, 683-698.	6.6	74
33	Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. Journal of Structural Biology, 2012, 177, 314-328.	1.3	72
34	Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus). Journal of Structural Biology, 2010, 171, 318-331.	1.3	70
35	Microcomputed tomography–based structural analysis of various bone tissue regeneration models. Nature Protocols, 2011, 6, 105-110.	5.5	70
36	Molecular targets for tendon neoformation. Journal of Clinical Investigation, 2008, 118, 439-444.	3.9	65

#	Article	IF	CITATIONS
37	Matrix stiffness determines the fate of nucleus pulposus–derived stem cells. Biomaterials, 2015, 49, 68-76.	5.7	64
38	The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. Journal of Cell Science, 2002, 115, 769-81.	1.2	64
39	Molecular Imaging of the Skeleton: Quantitative Real-Time Bioluminescence Monitoring Gene Expression in Bone Repair and Development. Journal of Bone and Mineral Research, 2003, 18, 570-578.	3.1	62
40	Structural and nanoindentation studies of stem cell-based tissue-engineered bone. Journal of Biomechanics, 2007, 40, 399-411.	0.9	62
41	Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses. Biomedical Microdevices, 2009, 11, 95-101.	1.4	62
42	Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12674-12685.	3.3	61
43	Nanobiomechanics of Repair Bone Regenerated by Genetically Modified Mesenchymal Stem Cells. Tissue Engineering - Part A, 2008, 14, 1709-1720.	1.6	60
44	Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration. Cells, 2021, 10, 2241.	1.8	59
45	Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells. Journal of Orthopaedic Research, 2008, 26, 522-530.	1.2	58
46	The Effect of Simulated Microgravity on Human Mesenchymal Stem Cells Cultured in an Osteogenic Differentiation System: A Bioinformatics Study. Tissue Engineering - Part A, 2010, 16, 3403-3412.	1.6	58
47	Maxillofacial–Derived Stem Cells Regenerate Critical Mandibular Bone Defect. Tissue Engineering - Part A, 2008, 14, 1763-1773.	1.6	57
48	Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone, 2008, 42, 861-870.	1.4	57
49	Nucleus pulposus degeneration alters properties of resident progenitor cells. Spine Journal, 2013, 13, 803-814.	0.6	57
50	Direct Gene Therapy for Bone Regeneration: Gene Delivery, Animal Models, and Outcome Measures. Tissue Engineering - Part B: Reviews, 2010, 16, 13-20.	2.5	56
51	Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics, 2019, 9, 7506-7524.	4.6	56
52	Bone loss (osteopenia) in old male mice results from diminished activity and availability of TGF-β. Journal of Cellular Biochemistry, 1998, 70, 478-488.	1.2	50
53	Genetically Modified Mesenchymal Stem Cells Induce Mechanically Stable Posterior Spine Fusion. Tissue Engineering - Part A, 2010, 16, 3679-3686.	1.6	50
54	Recombinant TGF-?1 stimulates bone marrow osteoprogenitor cell activity and bone matrix synthesis in osteopenic, old male mice. Journal of Cellular Biochemistry, 1999, 73, 379-389.	1.2	46

#	Article	IF	CITATIONS
55	Peptide-Modified "Smart―Hydrogels and Genetically Engineered Stem Cells for Skeletal Tissue Engineering. Biomacromolecules, 2010, 11, 1516-1526.	2.6	46
56	Osteoporosis as the sole presentation of bone marrow mastocytosis. Journal of Bone and Mineral Research, 1990, 5, 871-876.	3.1	43
57	PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Molecular Therapy, 2016, 24, 318-330.	3.7	43
58	Osteomalacia in Hereditary Hypophosphatemic Rickets with Hypercalciuria: A Correlative Clinical-Histomorphometric Study. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 229-235.	1.8	42
59	Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers. Bone and Mineral, 1990, 11, 141-151.	2.0	41
60	Recent Advances and Future of Gene Therapy for Bone Regeneration. Current Osteoporosis Reports, 2018, 16, 504-511.	1.5	40
61	Oxygenated Environment Enhances Both Stem Cell Survival and Osteogenic Differentiation. Tissue Engineering - Part A, 2013, 19, 748-758.	1.6	39
62	Nonviral ultrasound-mediated gene delivery in small and large animal models. Nature Protocols, 2019, 14, 1015-1026.	5.5	39
63	Smad8/BMP2â€engineered mesenchymal stem cells induce accelerated recovery of the biomechanical properties of the achilles tendon. Journal of Orthopaedic Research, 2012, 30, 1932-1939.	1.2	37
64	Bone-chip system to monitor osteogenic differentiation using optical imaging. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	37
65	Patterning osteogenesis by inducible gene expression in microfluidic culture systems. Integrative Biology (United Kingdom), 2011, 3, 39-47.	0.6	34
66	Advanced Molecular Profiling in Vivo Detects Novel Function of Dickkopf-3 in the Regulation of Bone Formation. Journal of Bone and Mineral Research, 2006, 21, 1935-1945.	3.1	32
67	Oral melanocytic lesions: differences in expression of HMB-45 and S-100 antigens in round and spindle cells of malignant and benign lesions. Journal of Oral Pathology and Medicine, 1994, 23, 60-64.	1.4	31
68	Revealing the interplay of bone and cartilage in osteoarthritis through multimodal imaging of murine joints. Bone, 2009, 45, 414-422.	1.4	31
69	PTH Promotes Allograft Integration in a Calvarial Bone Defect. Molecular Pharmaceutics, 2013, 10, 4462-4471.	2.3	30
70	Ultrasound-Mediated Gene Delivery Enhances Tendon Allograft Integration in Mini-Pig Ligament Reconstruction. Molecular Therapy, 2018, 26, 1746-1755.	3.7	28
71	BMP6-Engineered MSCs Induce Vertebral Bone Repair in a Pig Model: A Pilot Study. Stem Cells International, 2016, 2016, 1-8.	1.2	27
72	Design of a Filamentous Polymeric Scaffold forin VivoGuided Angiogenesis. Tissue Engineering, 2006, 12, 3021-3034.	4.9	26

#	Article	IF	CITATIONS
73	Distinct roles of BMP receptors Type IA and IB in osteoâ€ chondrogenic differentiation in mesenchymal progenitors (C3H10T1/2). BioFactors, 2004, 20, 71-84.	2.6	25
74	Quantitative, structural, and image-based mechanical analysis of nonunion fracture repaired by genetically engineered mesenchymal stem cells. Journal of Biomechanics, 2010, 43, 2315-2320.	0.9	25
75	Polymer-encapsulated engineered adult mesenchymal stem cells secrete exogenously regulated rhBMP-2, and induce osteogenic and angiogenic tissue formation. Polymers for Advanced Technologies, 2002, 13, 863-870.	1.6	23
76	Endoscopic cellular microscopy for in vivo biomechanical assessment of tendon function. Journal of Biomedical Optics, 2006, 11, 064010.	1.4	21
77	Detection of low back pain using pH level-dependent imaging of the intervertebral disc using the ratio of R _{1ï} dispersion and â~OH chemical exchange saturation transfer (RROC). Magnetic Resonance in Medicine, 2015, 73, 1196-1205.	1.9	21
78	The effect of ex vivo dynamic loading on the osteogenic differentiation of genetically engineered mesenchymal stem cell model. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 384-393.	1.3	18
79	Reliable chemical exchange saturation transfer imaging of human lumbar intervertebral discs using reducedâ€fieldâ€ofâ€view turbo spin echo at 3.0 T. NMR in Biomedicine, 2013, 26, 1672-1679.	1.6	18
80	Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures. Stem Cell Research and Therapy, 2017, 8, 51.	2.4	18
81	Quantitative chemical exchange saturation transfer MRI of intervertebral disc in a porcine model. Magnetic Resonance in Medicine, 2016, 76, 1677-1683.	1.9	17
82	Adeno-associated virus-coated allografts: a novel approach for cranioplasty. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e43-e50.	1.3	16
83	Cell-mediated gene therapy for bone formation and regeneration. Current Opinion in Molecular Therapeutics, 2002, 4, 390-4.	2.8	16
84	Genetically engineered mesenchymal stem cells: applications in spine therapy. Regenerative Medicine, 2009, 4, 99-108.	0.8	15
85	Teriparatide attenuates scarring around murine cranial bone allograft via modulation of angiogenesis. Bone, 2017, 97, 192-200.	1.4	15
86	Functional Fibered Confocal Microscopy: A Promising Tool for Assessing Tendon Regeneration. Tissue Engineering - Part C: Methods, 2009, 15, 485-491.	1.1	14
87	Transient overexpression of Pparl³2 and C/ebpl̂± in mesenchymal stem cells induces brown adipose tissue formation. Regenerative Medicine, 2013, 8, 295-308.	0.8	14
88	BMP gene delivery for skeletal tissue regeneration. Bone, 2020, 137, 115449.	1.4	13
89	Correlative clinico-pathological evaluation of oral premalignancy. Journal of Oral Pathology and Medicine, 1982, 11, 283-289.	1.4	11
90	Successful Highâ€Dose Calcium Treatment of Aluminumâ€Induced Metabolic Bone Disease in Longâ€Term Home Parenteral Nutrition. Journal of Parenteral and Enteral Nutrition, 1991, 15, 202-206.	1.3	11

#	Article	IF	CITATIONS
91	Molecular pain markers correlate with pH-sensitive MRI signal in a pig model of disc degeneration. Scientific Reports, 2018, 8, 17363.	1.6	11
92	Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts. Bioengineering, 2016, 3, 6.	1.6	10
93	In Vivo Imaging of Exogenous Progenitor Cells in Tendon Regeneration via Superparamagnetic Iron Oxide Particles. American Journal of Sports Medicine, 2019, 47, 2737-2744.	1.9	10
94	Expression of Brachyury in mesenchymal progenitor cells leads to cartilage-like tissue that is resistant to the destructive effect of rheumatoid arthritis synovial fibroblasts. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 124-128.	1.3	8
95	Ultrasoundâ€mediated transgene expression in endogenous stem cells recruited to bone injury sites. Polymers for Advanced Technologies, 2014, 25, 525-531.	1.6	8
96	Monitoring of the effect of intervertebral disc nucleus pulposus ablation by MRI. NMR in Biomedicine, 2010, 23, 554-562.	1.6	7
97	Mesenchymal Stem Cells. , 2011, , 285-304.		6
98	Computed Tomography and Optical Imaging of Osteogenesis-angiogenesis Coupling to Assess Integration of Cranial Bone Autografts and Allografts. Journal of Visualized Experiments, 2015, , e53459.	0.2	6
99	Mesenchymal Stem Cells. , 2019, , 205-218.		6
100	Bioluminescent Imaging in Bone. Methods in Molecular Biology, 2008, 455, 261-272.	0.4	6
101	Applications of Ultrasound-Mediated Gene Delivery in Regenerative Medicine. Bioengineering, 2022, 9, 190.	1.6	6
102	A study of a sample of oral cancer in Israel. Oral Surgery, Oral Medicine, and Oral Pathology, 1984, 57, 118-121.	0.6	5
103	Mesenchymal Stem Cells. , 2014, , 255-266.		5
104	Teriparatide (recombinant parathyroid hormone 1–34) enhances bone allograft integration in a clinically relevant pig model of segmental mandibulectomy. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1037-1049.	1.3	4
105	PTH-Induced Bone Regeneration and Vascular Modulation Are Both Dependent on Endothelial Signaling. Cells, 2022, 11, 897.	1.8	4
106	Capsule Around Silicone Implants in Diabetic Rats. Annals of Plastic Surgery, 1986, 17, 288-291.	0.5	3
107	Unique Congenital Features in Tuberous Sclerosis. Clinical Pediatrics, 1992, 31, 364-365.	0.4	3
108	Isolation and characterization of mesenchymal stromal progenitors from the temporomandibular joint disc. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1553-1561.	1.3	3

#	Article	IF	CITATIONS
109	Intradiscal quantitative chemical exchange saturation transfer MRI signal correlates with discogenic pain in human patients. Scientific Reports, 2021, 11, 19195.	1.6	3
110	Real-Time Bioluminescence Functional Imaging for Monitoring Tissue Formation and Regeneration. Methods in Molecular Biology, 2013, 1048, 181-193.	0.4	3
111	455. Genetically Engineered Adult Stem Cells and Hybrid Scaffolds as a Platform for Intervertebral Disc Regeneration. Molecular Therapy, 2006, 13, S175-S176.	3.7	2
112	Structural Bone Allograft Combined with Genetically Engineered Mesenchymal Stem Cells As a Novel Platform for Bone Tissue Engineering. Tissue Engineering, 2006, .	4.9	2
113	Cancrum oris-like lesions. British Journal of Oral and Maxillofacial Surgery, 1992, 30, 202.	0.4	1
114	Method for Embedding Temporal Bones of Rats in Methyl-Methacrylate. Annals of Otology, Rhinology and Laryngology, 1995, 104, 783-785.	0.6	1
115	Mesenchymal Stem Cells. , 2008, , 318-343.		1
116	Consideration of Biological Sex in Translating Regenerative Stem Cell Therapies. , 2017, , 443-458.		1
117	The Influence of Polymer Blends on Regulating Chondrogenesis. Coatings, 2019, 9, 451.	1.2	1
118	3D monitoring and control of microbubble cavitation for gene delivery. , 2019, , .		1
119	Direct Gene Therapy for Bone Regeneration: Gene Delivery, Animal Models, and Outcome Measures. Tissue Engineering - Part A, 0, , 110306231138043.	1.6	1
120	Gene Therapy Approaches for Disc Regeneration. , 2014, , 385-400.		1
121	Stem Cell Research: Regenerating the Skeleton and Craniofacial Complex. The Alpha Omegan, 2009, 102, 31-34.	0.1	0
122	High-performance imaging of stem cells using single-photon emissions. , 2011, , .		0
123	Mesenchymal Stem Cells for Bone Gene Therapy. , 2012, , 81-96.		0
124	Mesenchymal Stem Cells. , 2013, , 513-527.		0
125	Semiautomated Longitudinal Microcomputed Tomography-based Quantitative Structural Analysis of a Nude Rat Osteoporosis-related Vertebral Fracture Model. Journal of Visualized Experiments, 2017, , .	0.2	0
126	Notice of Removal: Ultrasound-mediated transfection of endogenous stem cells for regenerative		0

medicine. , 2017, , .

	Dan Ga	Dan Gazit		
#	Article	IF	CITATIONS	
127	Design of a Filamentous Polymeric Scaffold forin vivoGuided Angiogenesis. Tissue Engineering, 2006, .	4.9	Ο	