List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659776/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrophobicity of soils affected by fires: An assessment using molecular markers from ultra-high resolution mass spectrometry. Science of the Total Environment, 2022, 817, 152957.                                        | 8.0  | 13        |
| 2  | Bacterial communities from Trichuris spp. A contribution to deciphering the role of parasitic nematodes as vector of pathogens. Acta Tropica, 2022, 226, 106277.                                                           | 2.0  | 5         |
| 3  | Application of Biology to Cultural Heritage. Applied Sciences (Switzerland), 2022, 12, 841.                                                                                                                                | 2.5  | 0         |
| 4  | Sulfidic Habitats in the Gypsum Karst System of Monte Conca (Italy) Host a Chemoautotrophically<br>Supported Invertebrate Community. International Journal of Environmental Research and Public<br>Health, 2022, 19, 2671. | 2.6  | 1         |
| 5  | Brazilian cave heritage under siege. Science, 2022, 375, 1238-1239.                                                                                                                                                        | 12.6 | 32        |
| 6  | Fundamental Science and Engineering Questions in Planetary Cave Exploration. Journal of Geophysical<br>Research E: Planets, 2022, 127, .                                                                                   | 3.6  | 8         |
| 7  | Organic geochemistry and mineralogy suggest anthropogenic impact in speleothem chemistry from volcanic show caves of the Galapagos. IScience, 2022, 25, 104556.                                                            | 4.1  | 7         |
| 8  | Microbial Community Characterizing Vermiculations from Karst Caves and Its Role in Their Formation.<br>Microbial Ecology, 2021, 81, 884-896.                                                                               | 2.8  | 29        |
| 9  | Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. PeerJ, 2021, 9, e11386.                                                               | 2.0  | 25        |
| 10 | Revisiting and reanalysing the concept of bioreceptivity 25Âyears on. Science of the Total Environment,<br>2021, 770, 145314.                                                                                              | 8.0  | 50        |
| 11 | A roadmap for planetary caves science and exploration. Nature Astronomy, 2021, 5, 524-525.                                                                                                                                 | 10.1 | 19        |
| 12 | A conservation roadmap for the subterranean biome. Conservation Letters, 2021, 14, e12834.                                                                                                                                 | 5.7  | 31        |
| 13 | Paracoccus onubensis sp. nov., a novel alphaproteobacterium isolated from the wall of a show cave.<br>International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .                                       | 1.7  | 11        |
| 14 | Dominance of Arcobacter in the white filaments from the thermal sulfidic spring of Fetida Cave<br>(Apulia, southern Italy). Science of the Total Environment, 2021, 800, 149465.                                           | 8.0  | 6         |
| 15 | Biochar ageing in polluted soils and trace elements immobilisation in a 2-year field experiment.<br>Environmental Pollution, 2021, 290, 118025.                                                                            | 7.5  | 12        |
| 16 | Molecular Characterization of Burned Organic Matter at Different Soil Depths and Its Relationship with Soil Water Repellency: A Preliminary Result. Agronomy, 2021, 11, 2560.                                              | 3.0  | 2         |
| 17 | Impact of wildfires on subsurface volcanic environments: New insights into speleothem chemistry.<br>Science of the Total Environment, 2020, 698, 134321.                                                                   | 8.0  | 12        |
| 18 | Biochar amendment increases bacterial diversity and vegetation cover in trace element-polluted soils:<br>A long-term field experiment. Soil Biology and Biochemistry, 2020, 150, 108014.                                   | 8.8  | 29        |

ANA ZéLIA MILLER

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Colored Microbial Coatings in Show Caves from the Galapagos Islands (Ecuador): First<br>Microbiological Approach. Coatings, 2020, 10, 1134.                                                                                      | 2.6 | 15        |
| 20 | Impact of wildfire on granite outcrops in archaeological sites surrounded by different types of vegetation. Science of the Total Environment, 2020, 747, 141143.                                                                 | 8.0 | 9         |
| 21 | Testing the Feasibility of Titanium Dioxide Sol-Gel Coatings on Portuguese Glazed Tiles to Prevent<br>Biological Colonization. Coatings, 2020, 10, 1169.                                                                         | 2.6 | 6         |
| 22 | Lichen Vitality After a Space Flight on Board the EXPOSE-R2 Facility Outside the International Space Station: Results of the Biology and Mars Experiment. Astrobiology, 2020, 20, 583-600.                                       | 3.0 | 21        |
| 23 | Chemical, physical and morphological properties of biochars produced from agricultural residues:<br>Implications for their use as soil amendment. Waste Management, 2020, 105, 256-267.                                          | 7.4 | 77        |
| 24 | Light attenuation as a control for microbiogeomorphic features: Implications for coastal cave speleogenesis. Geomorphology, 2020, 354, 107054.                                                                                   | 2.6 | 2         |
| 25 | Microbial Communities in Vermiculation Deposits from an Alpine Cave. Frontiers in Earth Science, 2020, 8, .                                                                                                                      | 1.8 | 27        |
| 26 | Editorial: Recent developments with a view to the future. Conservar Patrimonio, 2020, 35, 8-9.                                                                                                                                   | 0.4 | 1         |
| 27 | Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS ONE, 2019, 14, e0220706.                                                                                                                                | 2.5 | 28        |
| 28 | Vermiculations from karst caves: The case of Pertosa-Auletta system (Italy). Catena, 2019, 182, 104178.                                                                                                                          | 5.0 | 17        |
| 29 | Characterization of Microbial Communities Associated with Ceramic Raw Materials as Potential<br>Contributors for the Improvement of Ceramic Rheological Properties. Minerals (Basel, Switzerland),<br>2019, 9, 316.              | 2.0 | 5         |
| 30 | Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential. Science of the Total Environment, 2019, 667, 578-585. | 8.0 | 58        |
| 31 | Biodeterioration of majolica glazed tiles by the fungus Devriesia imbrexigena. Construction and<br>Building Materials, 2019, 212, 49-56.                                                                                         | 7.2 | 16        |
| 32 | Editorial: New challenges for Conservar PatrimÃ <sup>3</sup> nio. Conservar Patrimonio, 2019, 32, 6-7.                                                                                                                           | 0.4 | 2         |
| 33 | Bacillus onubensis sp. nov., isolated from the air of two Andalusian caves. Systematic and Applied<br>Microbiology, 2018, 41, 167-172.                                                                                           | 2.8 | 26        |
| 34 | Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Scientific Reports, 2018, 8, 1944.                                                                | 3.3 | 46        |
| 35 | Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar.<br>Scientific Reports, 2018, 8, 2896.                                                                                                 | 3.3 | 30        |
| 36 | Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Science of the Total Environment, 2018, 613-614, 969-976.                                             | 8.0 | 143       |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Origin of abundant moonmilk deposits in a subsurface granitic environment. Sedimentology, 2018, 65, 1482-1503.                                                                                                                                                      | 3.1 | 22        |
| 38 | Landmark of the past in the Antequera megalithic landscape: A multi-disciplinary approach to the<br>Matacabras rock art shelter. Journal of Archaeological Science, 2018, 95, 76-93.                                                                                | 2.4 | 24        |
| 39 | Cellular Responses of the Lichen Circinaria gyrosa in Mars-Like Conditions. Frontiers in Microbiology, 2018, 9, 308.                                                                                                                                                | 3.5 | 19        |
| 40 | Linking serpentinization, hyperalkaline mineral waters and abiotic methane production in continental peridotites: an integrated hydrogeological-bio-geochemical model from the Cabeço de Vide CH4-rich aquifer (Portugal). Applied Geochemistry, 2018, 96, 287-301. | 3.0 | 15        |
| 41 | STARLIFE—An International Campaign to Study the Role of Galactic Cosmic Radiation in<br>Astrobiological Model Systems. Astrobiology, 2017, 17, 101-109.                                                                                                             | 3.0 | 53        |
| 42 | Water-rock Interaction Ascribed to Hyperalkaline Mineral Waters in the Cabeço de Vide Serpentinized<br>Ultramafic Intrusive Massif (Central Portugal). Procedia Earth and Planetary Science, 2017, 17, 646-649.                                                     | 0.6 | 1         |
| 43 | The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen <i>Circinaria gyrosa</i> . Astrobiology, 2017, 17, 145-153.                                                                                                                          | 3.0 | 12        |
| 44 | Nature and origin of the violet stains on the walls of a Roman tomb. Science of the Total Environment, 2017, 598, 889-899.                                                                                                                                          | 8.0 | 10        |
| 45 | Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain). Environmental Research, 2017, 159, 394-405.                                                                                     | 7.5 | 30        |
| 46 | Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars. Science of the Total Environment, 2017, 605-606, 147-157.                                                                                                                       | 8.0 | 15        |
| 47 | Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. Applied<br>Microbiology and Biotechnology, 2017, 101, 843-857.                                                                                                               | 3.6 | 40        |
| 48 | A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles.<br>Environmental Microbiology, 2016, 18, 4794-4816.                                                                                                                 | 3.8 | 33        |
| 49 | Diversity of phototrophic components in biofilms from Piperno historical stoneworks. Plant<br>Biosystems, 2016, 150, 720-729.                                                                                                                                       | 1.6 | 7         |
| 50 | Analytical pyrolysis and stable isotope analyses reveal past environmental changes in coralloid speleothems from Easter Island (Chile). Journal of Chromatography A, 2016, 1461, 144-152.                                                                           | 3.7 | 19        |
| 51 | Analytical pyrolysis evidences the presence of granaticins in the violet stains of a Roman tomb.<br>Journal of Analytical and Applied Pyrolysis, 2016, 117, 357-362.                                                                                                | 5.5 | 9         |
| 52 | An integrated approach for assessing the bioreceptivity of glazed tiles to phototrophic microorganisms. Biofouling, 2016, 32, 243-259.                                                                                                                              | 2.2 | 13        |
| 53 | Potential of natural biocides for biocontrolling phototrophic colonization on limestone.<br>International Biodeterioration and Biodegradation, 2016, 107, 102-110.                                                                                                  | 3.9 | 27        |
| 54 | Ana Heva lava tube (Easter Island, Chile): Preliminary characterization of the internal layers of coralloid-type speleothems. Microscopy and Microanalysis, 2015, 21, 68-69.                                                                                        | 0.4 | 5         |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions.<br>Frontiers in Microbiology, 2015, 6, 1342.                                                                                                                    | 3.5 | 99        |
| 56 | 13. Lascaux Cave: An Example of Fragile Ecological Balance in Subterranean Environments. , 2015, ,<br>279-302.                                                                                                                                              |     | 8         |
| 57 | Biological colonization and biodeterioration of architectural ceramic materials: An overview.<br>Journal of Cultural Heritage, 2015, 16, 759-777.                                                                                                           | 3.3 | 65        |
| 58 | The deterioration of Circular Mausoleum, Roman Necropolis of Carmona, Spain. Science of the Total<br>Environment, 2015, 518-519, 65-77.                                                                                                                     | 8.0 | 9         |
| 59 | Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in<br>Three Historical Buildings with Mural Paintings. PLoS ONE, 2014, 9, e103844.                                                                             | 2.5 | 45        |
| 60 | Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environmental Science and Pollution Research, 2014, 21, 473-484.                                                     | 5.3 | 28        |
| 61 | Siliceous Speleothems and Associated Microbe-Mineral Interactions from Ana Heva Lava Tube in Easter<br>Island (Chile). Geomicrobiology Journal, 2014, 31, 236-245.                                                                                          | 2.0 | 33        |
| 62 | Relating physical and chemical properties of four different biochars and their application rate to<br>biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79days. Science<br>of the Total Environment, 2014, 499, 175-184. | 8.0 | 123       |
| 63 | Recolonization of mortars by endolithic organisms on the walls of San Roque church in Campeche<br>(Mexico): A case of tertiary bioreceptivity. Construction and Building Materials, 2014, 53, 348-359.                                                      | 7.2 | 27        |
| 64 | Fungal biodeterioration of stained-glass windows. International Biodeterioration and Biodegradation, 2014, 90, 152-160.                                                                                                                                     | 3.9 | 36        |
| 65 | Is the presence of bacterial communities related to the urban contamination sources of the 16th century Paranhos spring water tunnel?. , 2014, , 95-102.                                                                                                    |     | 2         |
| 66 | Microbe-mineral interactions at a Portuguese geo-archaeological site. , 2014, , 103-111.                                                                                                                                                                    |     | 1         |
| 67 | Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal).<br>International Biodeterioration and Biodegradation, 2013, 84, 322-332.                                                                                 | 3.9 | 42        |
| 68 | Allochthonous red pigments used in burial practices at the Copper Age site of Valencina de la<br>Concepción (Sevilla, Spain): characterisation and social dimension. Journal of Archaeological<br>Science, 2013, 40, 279-290.                               | 2.4 | 25        |
| 69 | Nocardioides albertanoniae sp. nov., isolated from Roman catacombs. International Journal of<br>Systematic and Evolutionary Microbiology, 2013, 63, 1280-1284.                                                                                              | 1.7 | 15        |
| 70 | Evaluation of environmental conditions of the Museo del Ejército (Toledo, Spain) by means of Sol-Gel<br>optical sensors. , 2013, , 27-32.                                                                                                                   |     | 1         |
| 71 | Canonical Biplot as tool to detect microclimates in the inner and outer parts of Salamanca Cathedrals. , 2013, , 71-74.                                                                                                                                     |     | 1         |
| 72 | Enigmatic reticulated filaments in subsurface granite. Environmental Microbiology Reports, 2012, 4, 596-603.                                                                                                                                                | 2.4 | 28        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Biogenic Mn oxide minerals coating in a subsurface granite environment. Chemical Geology, 2012, 322-323, 181-191.                                                                                  | 3.3 | 52        |
| 74 | Uncovering the origin of the black stains in <scp>L</scp> ascaux <scp>C</scp> ave in <scp>F</scp> rance. Environmental Microbiology, 2012, 14, 3220-3231.                                          | 3.8 | 55        |
| 75 | Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Systematic and Applied Microbiology, 2012, 35, 306-309.                        | 2.8 | 58        |
| 76 | Bioreceptivity of building stones: A review. Science of the Total Environment, 2012, 426, 1-12.                                                                                                    | 8.0 | 208       |
| 77 | Evaluación de la influencia de la rugosidad superficial sobre la colonización epilÃtica de calizas<br>mediante técnicas sin contacto. Materiales De Construccion, 2012, 62, 411-424.               | 0.7 | 11        |
| 78 | Uranyl-Evansites from Porto (Northwest Portugal) and Galicia (Northwest Spain): Structure and<br>Assignment of Spectra Catholuminescence and Raman Bands. Spectroscopy Letters, 2011, 44, 511-515. | 1.0 | 5         |
| 79 | An integrated approach to assess the origins of black films on a granite monument. Environmental<br>Earth Sciences, 2011, 63, 1677-1690.                                                           | 2.7 | 21        |
| 80 | Laboratory-Induced Endolithic Growth in Calcarenites: Biodeteriorating Potential Assessment.<br>Microbial Ecology, 2010, 60, 55-68.                                                                | 2.8 | 25        |
| 81 | Primary bioreceptivity of limestones used in southern European monuments. Geological Society Special Publication, 2010, 331, 79-92.                                                                | 1.3 | 22        |
| 82 | The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Annals of Microbiology, 2009, 59, 705-713.                                     | 2.6 | 43        |
| 83 | Isolation of five Rubrobacter strains from biodeteriorated monuments. Die Naturwissenschaften, 2009, 96, 71-79.                                                                                    | 1.6 | 87        |
| 84 | Growth of phototrophic biofilms from limestone monuments under laboratory conditions.<br>International Biodeterioration and Biodegradation, 2009, 63, 860-867.                                     | 3.9 | 39        |
| 85 | Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview.<br>Microbiology (United Kingdom), 2009, 155, 3476-3490.                                        | 1.8 | 207       |
| 86 | Reproducing stone monument photosynthetic-based colonization under laboratory conditions.<br>Science of the Total Environment, 2008, 405, 278-285.                                                 | 8.0 | 45        |
| 87 | Primary bioreceptivity: A comparative study of different Portuguese lithotypes. International<br>Biodeterioration and Biodegradation, 2006, 57, 136-142.                                           | 3.9 | 55        |
| 88 | 2020: heritage, the pandemic and the journal. Conservar Patrimonio, 0, , 8-11.                                                                                                                     | 0.4 | 1         |
| 89 | Conservar PatrimÃ <sup>3</sup> nio, a consolidation process. Conservar Patrimonio, 0, , 8-9.                                                                                                       | 0.4 | 0         |