Jian-Qiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659747/publications.pdf

Version: 2024-02-01

		44069	85541
119	5,509	48	71
papers	citations	h-index	g-index
120	120	120	3066
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cobalt-seamed C-methylpyrogallol[4]arene nanocapsules-derived magnetic carbon cubes as advanced adsorbent toward drug contaminant removal. Chemical Engineering Journal, 2022, 433, 133857.	12.7	31
2	The extra-large calixarene-based MOFs-derived hierarchical composites for photocatalysis of dye: Facile syntheses and contribution of carbon species. Journal of Alloys and Compounds, 2022, 897, 163178.	5.5	95
3	Structures of Dimer-of-Dimers Type Defect Cubane Tetranuclear Copper(II) Complexes with Novel Dinucleating Ligands. Molecules, 2022, 27, 576.	3.8	6
4	Metal-Organic Frameworks (MOFs): A Promising Photocatalytic Material Current Chinese Chemistry, 2022, 02, .	0.4	0
5	Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112432.	5. O	59
6	Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 1183-1202.	5. 0	24
7	Metal organic frameworks as efficient adsorbents for drugs from wastewater. Materials Today Communications, 2022, 31, 103514.	1.9	85
8	A multimodal Metal-Organic framework based on unsaturated metal site for enhancing antitumor cytotoxicity through Chemo-Photodynamic therapy. Journal of Colloid and Interface Science, 2022, 621, 180-194.	9.4	63
9	Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. Journal of Solid State Chemistry, 2022, 314, 123352.	2.9	23
10	Current status and prospects of metal–organic frameworks for bone therapy and bone repair. Journal of Materials Chemistry B, 2022, 10, 5105-5128.	5.8	111
11	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	2.8	61
12	Self-adjusted bimetallic zeolitic-imidazolate framework-derived hierarchical magnetic carbon composites as efficient adsorbent for optimizing drug contaminant removal. Chemosphere, 2021, 263, 128101.	8.2	50
13	A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chemical Engineering Journal, 2021, 412, 127899.	12.7	86
14	Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers. CrystEngComm, 2021, 23, 741-747.	2.6	104
15	Recent developments on MOF-based platforms for antibacterial therapy. RSC Medicinal Chemistry, 2021, 12, 915-928.	3.9	52
16	Recent advances in cell membrane coated metal–organic frameworks (MOFs) for tumor therapy. Journal of Materials Chemistry B, 2021, 9, 4459-4474.	5.8	115
17	Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catalysis Science and Technology, 2021, 11, 3946-3989.	4.1	134
18	One-Step Construction of a Hollow Au@Bimetalâ€"Organic Framework Coreâ€"Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction. ACS Applied Materials & Interfaces, 2021, 13, 12463-12471.	8.0	68

#	Article	lF	CITATIONS
19	Two 3D supramolecular isomeric Zn(II)-MOFs as photocatalysts for photodegradation of methyl violet dye. Dyes and Pigments, 2021, 190, 109285.	3.7	63
20	Recent Advances in Fe-MOF Compositions for Biomedical Applications. Current Medicinal Chemistry, 2021, 28, 6179-6198.	2.4	31
21	Applications of ROS-InducedZr-MOFs Platform in Multimodal Synergistic Therapy. Mini-Reviews in Medicinal Chemistry, 2021, 21, 1718-1733.	2.4	8
22	Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordination Chemistry Reviews, 2021, 445, 214074.	18.8	179
23	Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA. Science of the Total Environment, 2021, 792, 148247.	8.0	17
24	Structure and photocatalytic performance of a metallacycle complex based on flexible carboxylic acid ligand. Polyhedron, 2021, 209, 115480.	2.2	0
25	Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. Journal of Inorganic Biochemistry, 2021, 225, 111599.	3.5	36
26	Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New Journal of Chemistry, 2021, 45, 20987-21000.	2.8	59
27	Series of highly stable Cd(<scp>ii</scp>)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic. CrystEngComm, 2021, 23, 8043-8052.	2.6	60
28	Alkali /alkaline earth-based metal–organic frameworks for biomedical applications. Dalton Transactions, 2021, 50, 17438-17454.	3.3	30
29	A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Transactions, 2021, 50, 18016-18026.	3.3	77
30	Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coordination Chemistry Reviews, 2020, 406, 213145.	18.8	366
31	A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery. Inorganic Chemistry Communication, 2020, 111, 107675.	3.9	43
32	A sheet-like MOF-derived phosphorus-doped porous carbons for supercapacitor electrode materials. Inorganic Chemistry Communication, 2020, 119, 108141.	3.9	20
33	Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm, 2020, 22, 7736-7781.	2.6	97
34	A versatile and multifunctional metal–organic framework nanocomposite toward chemo-photodynamic therapy. Dalton Transactions, 2020, 49, 5291-5301.	3.3	67
35	Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy. Dalton Transactions, 2020, 49, 11045-11058.	3.3	113
36	A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chemical Engineering Journal, 2020, 390, 124446.	12.7	99

#	Article	IF	CITATIONS
37	Mixed-metal systems for the synthesis of MOFs. , 2020, , 45-68.		8
38	Modular construction, magnetism and photocatalytic properties of two new metal-organic frameworks based on a semi-rigid tetracarboxylate ligand. Journal of Solid State Chemistry, 2019, 277, 673-679.	2.9	17
39	Metal–Organic Framework (MOF)-based Nanomaterials for Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 3341-3369.	2.4	117
40	Photocatalytic and Ferric Ion Sensing Properties of a New Three-Dimensional Metal–Organic Framework Based on Cuboctahedral Secondary Building Units. ACS Omega, 2019, 4, 10775-10783.	3 . 5	78
41	A new Zn(<scp>ii</scp>)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm, 2019, 21, 4578-4585.	2.6	119
42	A New 3D 10-Connected Cd(II) Based MOF With Mixed Ligands: A Dual Photoluminescent Sensor for Nitroaroamatics and Ferric Ion. Frontiers in Chemistry, 2019, 7, 244.	3.6	50
43	Recent developments on zinc(<scp>ii</scp>) metal–organic framework nanocarriers for physiological pH-responsive drug delivery. MedChemComm, 2019, 10, 2038-2051.	3.4	41
44	A 3D metal-organic framework with isophthalic acid linker for photocatalytic properties. Inorganic Chemistry Communication, 2019, 100, 92-96.	3.9	29
45	Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere, 2019, 215, 524-531.	8.2	104
46	Four new luminescent-organic frameworks exhibiting highly sensing of nitroaromatics: An experimental and computational insight. Inorganica Chimica Acta, 2019, 487, 257-263.	2.4	15
47	Five lanthanide supramolecular frameworks based on mixed 3-(4-hydroxyphenyl)propanoic acid and 1,10-phenanthroline tectons: Crystal structures and luminescent properties. Journal of Molecular Structure, 2019, 1177, 117-123.	3.6	6
48	Design of Metal-Organic Frameworks for pH-Responsive Drug Delivery Application. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1644-1665.	2.4	15
49	A new Zn(<scp>ii</scp>) metal–organic framework having 3D CdSO ₄ topology as luminescent sensor and photocatalyst for degradation of organic dyes. New Journal of Chemistry, 2018, 42, 2767-2775.	2.8	79
50	Cyclodextrin-Based Metal-Organic Frameworks (CD-MOFs) in Pharmaceutics and Biomedicine. Pharmaceutics, 2018, 10, 271.	4.5	104
51	A polyhedral metal-organic framework based on rigid precursor for photocatalytic properties. Inorganic Chemistry Communication, 2018, 97, 109-112.	3.9	11
52	A 3D Stable Metal–Organic Framework for Highly Efficient Adsorption and Removal of Drug Contaminants from Water. Polymers, 2018, 10, 209.	4.5	48
53	The utilization of a stable 2D bilayer MOF for simultaneous study of luminescent and photocatalytic properties: experimental studies and theoretical analysis. RSC Advances, 2018, 8, 23529-23538.	3.6	24
54	A new 3D Gd-based metal-organic framework with paddle-wheel unit: Structure and photocatalytic property. Inorganic Chemistry Communication, 2018, 95, 104-106.	3.9	8

#	Article	IF	Citations
55	Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(<scp>ii</scp>) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. Dalton Transactions, 2018, 47, 9627-9633.	3.3	92
56	A new metal-organic framework constructed from tetracarboxylate: Structure, magnetism and simulation. Inorganic and Nano-Metal Chemistry, 2017, 47, 218-222.	1.6	2
57	A metal-organic framework with unusual nanocages: Drug delivery. Inorganic Chemistry Communication, 2017, 76, 91-94.	3.9	16
58	Cytotoxicity of a metal–organic framework: Drug delivery. Inorganic Chemistry Communication, 2017, 77, 68-71.	3.9	27
59	Fluorescence detection of Mn ²⁺ , Cr ₂ O ₇ ^{2â^'} and nitroexplosives and photocatalytic degradation of methyl violet and rhodamine B based on two stable metalâ€"organic frameworks. RSC Advances, 2017, 7, 10415-10423.	3.6	69
60	Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites. Journal of Luminescence, 2017, 186, 40-47.	3.1	21
61	Fluorescence sensing of nitro-aromatics by Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) based coordination polymers having the 5-[bis(4-carboxybenzyl)-amino]isophthalic acid ligand. New Journal of Chemistry, 2017, 41, 3537-3542.	2.8	48
62	Two lanthanide-based metal–organic frameworks for highly efficient adsorption and removal of fluoride ions from water. CrystEngComm, 2017, 19, 2172-2177.	2.6	72
63	Rational Syntheses of Cd ^{II} and Pb ^{II} Metalâ€Organic Frameworks for Luminescence Sensing of Nitroaromatics, Ferric and Chromate Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 214-219.	1.2	15
64	Two Metal–Organic Frameworks with Pharmaceutical Ingredient Linker: Influence of pH and Temperature. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 334-341.	3.7	7
65	A 3D luminescent Zn(<scp>ii</scp>) MOF for the detection of high explosives and the degradation of organic dyes: an experimental and computational study. CrystEngComm, 2017, 19, 6464-6472.	2.6	66
66	An uncommon 3D 3,3,4,8-c Cd(<scp>ii</scp>) metal–organic framework for highly efficient luminescent sensing and organic dye adsorption: experimental and theoretical insight. CrystEngComm, 2017, 19, 7057-7067.	2.6	31
67	An unusual zig-zag 1D copper(<scp>ii</scp>) coordination polymer displaying magnetic phase transition. Dalton Transactions, 2017, 46, 15178-15180.	3.3	21
68	Microporous Metal–Organic Framework Based on Ligand-Truncation Strategy with High Performance for Gas Adsorption and Separation. Inorganic Chemistry, 2017, 56, 10215-10219.	4.0	77
69	Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cells. Pharmaceutical Research, 2017, 34, 2440-2450.	3. 5	39
70	Photocatalytic degradation of organic dyes by a stable and biocompatible Zn(II) MOF having ferulic acid: Experimental findings and theoretical correlation. Journal of Molecular Structure, 2017, 1149, 352-356.	3.6	43
71	A porous zinc(II) metal–organic framework exhibiting high sensing ability for ferric and nitroaromatics as well as photocatalytic degradation activities against organic dyes. Journal of Coordination Chemistry, 2017, 70, 3946-3958.	2.2	8
72	Fabrication of a new metal–organic framework for sensitive sensing of nitroaromatics and efficient dye adsorption. RSC Advances, 2017, 7, 54522-54531.	3.6	25

#	Article	IF	CITATIONS
73	Luminescent sensing and photocatalytic degradation properties of an uncommon (4,5,5)-connected 3D MOF based on 3,5-di(3′,5′-dicarboxylphenyl)benzoic acid. CrystEngComm, 2017, 19, 4368-4377.	2.6	82
74	An uncommon (5,5)-connected 3D metal organic material for selective and sensitive sensing of nitroaromatics and ferric ion: experimental studies and theoretical analysis. CrystEngComm, 2017, 19, 3519-3525.	2.6	78
75	Rational synthesis of a novel 3,3,5-c polyhedral metal–organic framework with high thermal stability and hydrogen storage capability. Journal of Materials Chemistry A, 2016, 4, 11630-11634.	10.3	114
76	Designed metal–organic framework based on metal–organic polyhedron: Drug delivery. Inorganic Chemistry Communication, 2016, 71, 32-34.	3.9	31
77	Encapsulation of pharmaceutical ingredient linker in metal–organic framework: combined experimental and theoretical insight into the drug delivery. RSC Advances, 2016, 6, 47959-47965.	3.6	52
78	Rational synthesis of a porous polyhedral metal-organic framework carrier for controllable drug release. Inorganic Chemistry Communication, 2016, 73, 26-29.	3.9	14
79	Two Unusual Nanocageâ€Based Lnâ€MOFs with Triazole Sites: Highly Fluorescent Sensing for Fe ³⁺ and Cr ₂ O ₇ ^{2â°} , and Selective CO ₂ Capture. ChemPlusChem, 2016, 81, 1299-1304.	2.8	133
80	A Luminescent Zinc(II) Metal–Organic Framework for Selective Detection of Nitroaromatics, Fe ³⁺ and CrO ₄ ^{2â^²} : A Versatile Threefold Fluorescent Sensor. ChemPlusChem, 2016, 81, 885-892.	2.8	67
81	Metal-Controlled Assembly of Two Coordination Polymers Built from 4,4′-Methylenedibenzoic Acid with or Without Methyl-Functionalized N-Donor Ligand. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 413-422.	3.7	5
82	Luminescent sensing from a new Zn(<scp>ii</scp>) metal–organic framework. RSC Advances, 2016, 6, 31161-31166.	3.6	83
83	Synthesis, Structure, Luminescence and Gas Sorption of a 3D Zn(II) Polymer Material with Rutile Topology. Journal of Cluster Science, 2015, 26, 827-834.	3.3	2
84	A new (4,8)-connected topological MOF as potential drug delivery. Inorganic Chemistry Communication, 2015, 55, 8-10.	3.9	83
85	Hydrostable and Nitryl/Methyl-Functionalized Metal–Organic Framework for Drug Delivery and Highly Selective CO ₂ Adsorption. Inorganic Chemistry, 2015, 54, 6719-6726.	4.0	91
86	Combined experimental and theoretical insight into the drug delivery of nanoporous metal–organic frameworks. RSC Advances, 2015, 5, 85606-85612.	3 . 6	21
87	A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery. Dalton Transactions, 2015, 44, 19370-19382.	3.3	83
88	Structure and magnetism of a new 2-D trinuclear Mn(II) polymer. Journal of Coordination Chemistry, 2014, 67, 2271-2279.	2.2	0
89	Three New Coordination Polymers Constructed from Mixed Ligands: Syntheses, Luminescence and Magnetism. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 542-550.	3.7	5
90	Temperature identification on two 3D Mn(ii) metal–organic frameworks: syntheses, adsorption and magnetism. RSC Advances, 2014, 4, 20605.	3 . 6	19

#	Article	IF	Citations
91	Different interpenetrated coordination polymers based on flexible dicarboxylate ligands: topological diversity and magnetism. CrystEngComm, 2014, 16, 3103-3112.	2.6	29
92	A new 3D four-fold interpenetrated dia -like polymer: gas sorption and computational analyses. CrystEngComm, 2014, 16, 10410-10417.	2.6	2
93	Series of Cd(II) and Pb(II) Coordination Polymers Based on a Multilinker (<i>R,S</i> -)2,2′-Bipyridine-3,3′-dicarboxylate-1,1′-dioxide. Crystal Growth and Design, 2014, 14, 5466-54	4 3 60	43
94	Two isoreticular metal–organic frameworks with CdSO ₄ -like topology: selective gas sorption and drug delivery. Dalton Transactions, 2014, 43, 17265-17273.	3.3	51
95	Synthesis and characterization of two new metal–organic frameworks with interpenetrated structures and luminescent properties. Journal of Coordination Chemistry, 2013, 66, 3509-3518.	2.2	11
96	A New Supramolecular Coordination Polymer Constructed by Flexible and Rigid Organic Coligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 861-863.	0.6	3
97	Luminescence Property and Structure of a 3D Six- and Eight-Coordinative Cd(II) MOF Containing a [Na2(H2O)6] Unit. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1231-1235.	0.6	8
98	Theoretical Calculation and Experimental Analysis of Molecular Complementarity in Co-Crystal. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 869-872.	0.6	2
99	An Unusual 3D Interdigitated Network Structure of Bridging Coligands With Appended Hydrogen Sites. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1445-1448.	0.6	0
100	Synthesis, structural characterization, and properties of an entangled metal–organic framework based on a flexible dicarboxylate and a rigid N-donor. Journal of Coordination Chemistry, 2012, 65, 1303-1310.	2.2	20
101	Control over multifarious entangled Co(ii) metal–organic frameworks: role of steric bulk and molar ratio of organic ligands. CrystEngComm, 2012, 14, 2906.	2.6	57
102	Assembly of a New Three-Dimensional Metal-Organic Framework With V-Shaped Carboxylate Ligand and Rigid N-Donor Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1115-1119.	0.6	5
103	1-D Chain lanthanide coordination polymers based on mixed 2,4-dichlorophenoxyacetate and 1,10-phenanthroline ligands: crystal structures and luminescent properties. Journal of Coordination Chemistry, 2012, 65, 3424-3432.	2.2	6
104	Structural variability of Co(ii) and Ni(ii) entangled metal–organic frameworks: effect of N-donor ligands and metal ions. CrystEngComm, 2011, 13, 3733.	2.6	53
105	Crystal engineering of Cd(II) metal–organic frameworks bridged by dicarboxylates and N-donor coligands. Journal of Coordination Chemistry, 2011, 64, 1503-1512.	2.2	13
106	Molecular Tectonics of Entangled Metalâ^'Organic Frameworks Based on Different Conformational Carboxylates Mixed with a Flexible N,N′-Type Ligand. Crystal Growth and Design, 2011, 11, 569-574.	3.0	61
107	Synthesis, Structure, and Characterization of a Porous Metal-Organic Framework Based on Bimetallic Unit and Flexible Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 479-483.	0.6	2
108	Syntheses and structural characterization of two metal-organic frameworks from tripodal and dipodal ligands. Journal of Coordination Chemistry, 2011, 64, 1807-1814.	2.2	20

#	Article	IF	CITATIONS
109	A 3D Metal-Organic Framework Assembled with Long and Flexible Co-Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 540-543.	0.6	1
110	An Unusual 2DÂâ†'Â3D Metal–organic Framework Directed by Rigid and Flexible Co-Ligands. Journal of Chemical Crystallography, 2011, 41, 1940-1944.	1.1	4
111	A New Six-Connected Double-Layer Metal-Organic Framework Directed by Carboxylate and N-Containing Donor Co-Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1240-1243.	0.6	2
112	Synthesis and Characterization of a New Metal-Organic Framework Constructed by Flexible Co-Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1122-1125.	0.6	1
113	The Identification of Temperature on Construction of a 3D Doubly Interpenetrated Metal-Organic Framework. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1229-1233.	0.6	O
114	catena-Poly[[[aqua(1,10-phenanthroline)manganese(II)]- $\hat{1}\frac{1}{4}$ -adamantane-1,3-dicarboxylato] monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1541-m1542.	0.2	1
115	4,4′-Bipyridine–cyclohexane-1,2,4,5-tetracarboxylic acid (1/1). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2741-o2741.	0.2	1
116	A New 2D Coordination Polymer Material Based on 4d-4f Heterometallic Assembly. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 27-31.	0.6	3
117	Assembly of 3D Metal-Organic Framework Based on Heterobimetallic Cu-K Unit and Oxalate Linkage. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 237-240.	0.6	2
118	A Luminescent Eight-Coordinated 2D Cd(II) Framework Material with Flexible Multi-Carboxylate Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 231-236.	0.6	4
119	An Unusual 3D Entangled Co(II) Coordination Polymer Directed by Ferromagnetic Molecular Building Block. Inorganic Chemistry, 2010, 49, 10422-10426.	4.0	53