## Alexandre Goguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659526/publications.pdf Version: 2024-02-01



ALEXANDRE COCHET

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2Catalyst. Journal of Physical Chemistry B, 2004, 108, 20240-20246.                                                                         | 2.6  | 306       |
| 2  | Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 2015, 5, 3430-3445.                                                                                                             | 11.2 | 154       |
| 3  | Sustaining metal–organic frameworks for water–gas shift catalysis by non-thermal plasma. Nature<br>Catalysis, 2019, 2, 142-148.                                                                                                         | 34.4 | 123       |
| 4  | Nonâ€Thermal Plasma Activation of Goldâ€Based Catalysts for Lowâ€Temperature Water–Gas Shift<br>Catalysis. Angewandte Chemie - International Edition, 2017, 56, 5579-5583.                                                              | 13.8 | 77        |
| 5  | Increased Dispersion of Supported Gold during Methanol Carbonylation Conditions. Journal of the American Chemical Society, 2009, 131, 6973-6975.                                                                                        | 13.7 | 75        |
| 6  | Structural selectivity of supported Pd nanoparticles for catalytic NH3 oxidation resolved using combined operando spectroscopy. Nature Catalysis, 2019, 2, 157-163.                                                                     | 34.4 | 74        |
| 7  | Redispersion of Gold Supported on Oxides. ACS Catalysis, 2012, 2, 552-560.                                                                                                                                                              | 11.2 | 73        |
| 8  | Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions. ACS Catalysis, 2016, 6, 1356-1381.                                                                | 11.2 | 70        |
| 9  | Selective Hydrogenation of α,βâ€Unsaturated Aldehydes and Ketones using Novel Manganese Oxide and<br>Platinum Supported on Manganese Oxide Octahedral Molecular Sieves as Catalysts. ChemCatChem,<br>2013, 5, 506-512.                  | 3.7  | 62        |
| 10 | Ambient Temperature Hydrocarbon Selective Catalytic Reduction of NO <sub><i>x</i></sub> Using<br>Atmospheric Pressure Nonthermal Plasma Activation of a Ag/Al <sub>2</sub> O <sub>3</sub> Catalyst.<br>ACS Catalysis, 2014, 4, 666-673. | 11.2 | 62        |
| 11 | SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths. Analyst,<br>The, 2010, 135, 2260.                                                                                                            | 3.5  | 60        |
| 12 | Probing the Role of a Nonâ€Thermal Plasma (NTP) in the Hybrid NTP Catalytic Oxidation of Methane.<br>Angewandte Chemie - International Edition, 2017, 56, 9351-9355.                                                                    | 13.8 | 58        |
| 13 | Critical role of water in the direct oxidation of CO and hydrocarbons in diesel exhaust after treatment catalysis. Applied Catalysis B: Environmental, 2014, 147, 764-769.                                                              | 20.2 | 42        |
| 14 | Gold imidazolium-based ionic liquids, efficient catalysts for cycloisomerization of Î <sup>3</sup> -acetylenic carboxylic acids. New Journal of Chemistry, 2009, 33, 102-106.                                                           | 2.8  | 29        |
| 15 | Application of halohydrocarbons for the re-dispersion of gold particles. Catalysis Science and Technology, 2014, 4, 729.                                                                                                                | 4.1  | 26        |
| 16 | Combined In Situ XAFS/DRIFTS Studies of the Evolution of Nanoparticle Structures from Molecular<br>Precursors. Chemistry of Materials, 2017, 29, 7515-7523.                                                                             | 6.7  | 26        |
| 17 | Spatial Profiling of a Pd/Al <sub>2</sub> O <sub>3</sub> Catalyst during Selective Ammonia Oxidation.<br>ACS Catalysis, 2021, 11, 2141-2149.                                                                                            | 11.2 | 25        |
| 18 | An in situ spatially resolved method to probe gas phase reactions through a fixed bed catalyst.<br>Catalysis Science and Technology, 2012, 2, 1811.                                                                                     | 4.1  | 24        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Evaluation of an in situ spatial resolution instrument for fixed beds through the assessment of the invasiveness of probes and a comparison with a micro-kinetic model. Journal of Catalysis, 2014, 319, 239-246. | 6.2  | 24        |
| 20 | An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor. Analyst, The, 2013, 138, 2858.                       | 3.5  | 22        |
| 21 | Remarkable stability of ionic gold supported on sulfated lanthanum oxide. Chemical Communications, 2009, , 4889.                                                                                                  | 4.1  | 21        |
| 22 | Unraveling the H <sub>2</sub> Promotional Effect on Palladium-Catalyzed CO Oxidation Using a<br>Combination of Temporally and Spatially Resolved Investigations. ACS Catalysis, 2018, 8, 8255-8262.               | 11.2 | 19        |
| 23 | Combined spatially resolved operando spectroscopy: New insights into kinetic oscillations of CO oxidation on Pd/l̂3-Al2O3. Journal of Catalysis, 2019, 373, 201-208.                                              | 6.2  | 19        |
| 24 | Activation of Alkanes by Goldâ€Modified Lanthanum Oxide. ChemCatChem, 2011, 3, 394-398.                                                                                                                           | 3.7  | 17        |
| 25 | Non-thermal-plasma-activated de-NO <sub>x</sub> catalysis. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170054.                                         | 3.4  | 17        |
| 26 | A design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions. Catalysis Science and Technology, 2020, 10, 1458-1466.                                              | 4.1  | 17        |
| 27 | Investigation of the oxygen storage capacity behaviour of three way catalysts using spatio-temporal<br>analysis. Applied Catalysis B: Environmental, 2019, 258, 117918.                                           | 20.2 | 16        |
| 28 | Nonâ€Thermal Plasma Activation of Goldâ€Based Catalysts for Lowâ€Temperature Water–Gas Shift<br>Catalysis. Angewandte Chemie, 2017, 129, 5671-5675.                                                               | 2.0  | 11        |
| 29 | Kinetics of Water Gas Shift Reaction on Au/CeZrO4: A Comparison Between Conventional Heating and<br>Dielectric Barrier Discharge (DBD) Plasma Activation. Topics in Catalysis, 2020, 63, 363-369.                 | 2.8  | 11        |
| 30 | Detailed validation of an automotive catalysis model using spatially resolved measurements within the catalyst substrate. Canadian Journal of Chemical Engineering, 2014, 92, 1535-1541.                          | 1.7  | 10        |
| 31 | Comment on "The Critical evaluation of in situ probe techniques for catalytic honeycomb monoliths―<br>by Hettel et al Catalysis Today, 2014, 236, 206-208.                                                        | 4.4  | 10        |
| 32 | Spatially-resolved investigation of the water inhibition of methane oxidation over palladium.<br>Catalysis Science and Technology, 2020, 10, 1858-1874.                                                           | 4.1  | 10        |
| 33 | Time of flight mass spectrometry for quantitative data analysis in fast transient studies using a<br>Temporal Analysis of Products (TAP) reactor. Analyst, The, 2011, 136, 155-163.                               | 3.5  | 9         |
| 34 | In Situ Spatially Resolved Techniques for the Investigation of Packed Bed Catalytic Reactors: Current<br>Status and Future Outlook of Spaci-FB. Advances in Chemical Engineering, 2017, , 131-160.                | 0.9  | 9         |
| 35 | Correction for a possible reversible adsorption over an "inert―material. Catalysis Science and<br>Technology, 2011, 1, 760.                                                                                       | 4.1  | 8         |
| 36 | TAP studies on 2% Ag/γ–Al2O3 catalyst for selective reduction of oxygen in a H2-rich ethylene feed.<br>Catalysis Science and Technology, 2012, 2, 2128.                                                           | 4.1  | 8         |

Alexandre Goguet

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Limitations of Global Kinetic Parameters for Automotive Application. , 0, , .                                                                                                                                                                                                 |     | 8         |
| 38 | Expansion of pulse responses from temporal analysis of products (TAP) for more accurate data analysis. Catalysis Science and Technology, 2014, 4, 3665-3671.                                                                                                                  | 4.1 | 5         |
| 39 | Comparison between the thermal and plasma (NTP) assisted palladium catalyzed oxidation of CH4 using AC or nanopulse power supply. Catalysis Today, 2022, 384-386, 177-186.                                                                                                    | 4.4 | 5         |
| 40 | Re-dispersion of gold supported on a <b>â€~</b> mixed <b>'</b> oxide support. Journal of Lithic Studies,<br>2015, 1, 120-124.                                                                                                                                                 | 0.5 | 3         |
| 41 | Probing the Role of a Nonâ€Thermal Plasma (NTP) in the Hybrid NTP Catalytic Oxidation of Methane.<br>Angewandte Chemie, 2017, 129, 9479-9483.                                                                                                                                 | 2.0 | 3         |
| 42 | Development of a spatially resolved technique for the measurement of effective diffusions and its application to the modelling of washcoated catalytic monoliths. Applied Catalysis A: General, 2022, 638, 118608.                                                            | 4.3 | 2         |
| 43 | Characterisation and modelling of the reactions in a three-way PdRh catalyst in the exhaust gas from<br>an ethanol-fuelled spark-ignition engine. Proceedings of the Institution of Mechanical Engineers, Part<br>D: Journal of Automobile Engineering, 2019, 233, 3222-3234. | 1.9 | 1         |
| 44 | Optimization of Non-thermal Plasma-Assisted Catalytic Oxidation for Methane Emissions Abatement as an Exhaust Aftertreatment Technology. Plasma Chemistry and Plasma Processing, 2022, 42, 709-730.                                                                           | 2.4 | 1         |
| 45 | Thermal ageing of a commercial LNT catalyst: Effects on the structure and functionalities. Catalysis Today, 2021, 384-386, 228-228.                                                                                                                                           | 4.4 | 0         |