Qingguo He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659506/publications.pdf Version: 2024-02-01

		186265	233421
112	2,547	28	45
papers	citations	h-index	g-index
112	112	112	2864
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Micro-interfaces modulation by UV—ozone substrate treatment for MPEA vapor fluorescence detection. Nano Research, 2023, 16, 4055-4060.	10.4	5
2	Research progress of breath figure method in device application. Chinese Journal of Analytical Chemistry, 2022, 50, 44-52.	1.7	4
3	Tri-probe fluorescent sensor array for a wide concentration range and high precision identification of aqueous organic amines. Sensors and Actuators B: Chemical, 2022, 358, 131519.	7.8	4
4	High-sensitivity sensor array base on molecular design and machine learning for amine differentiation in exhaled vapor. Chinese Journal of Analytical Chemistry, 2022, 50, 100059.	1.7	1
5	In Situ Turn-On Room Temperature Phosphorescence and Vapor Ultra-sensitivity at Lifetime Mode. Analytical Chemistry, 2022, 94, 5190-5195.	6.5	4
6	Soft template-mediated coupling construction of sandwiched mesoporous PPy/Ag nanoplates for rapid and selective NH ₃ sensing. Journal of Materials Chemistry A, 2021, 9, 8308-8316.	10.3	18
7	A facile approach for significantly enhancing fluorescent gas sensing by oxygen plasma treatments. Sensors and Actuators B: Chemical, 2021, 331, 129397.	7.8	4
8	Fluorescent Enhancement of CaF 2 : Nd 3+ Nanoparticles through a Concentrationâ€Gradient Core/Shell Hybrid Structure. ChemistrySelect, 2021, 6, 2988-2993.	1.5	0
9	Detecting methylphenethylamine vapor using fluorescence aggregate concentration quenching materials. Sensors and Actuators B: Chemical, 2021, 334, 129629.	7.8	18
10	Supramolecule-Originated Emission: A Room-Temperature Phosphorescence 2D Ionic H-Bond Network from Nonemissive Aliphatic Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 61528-61535.	8.0	2
11	Two-dimensional mesoporous sensing materials. Chinese Chemical Letters, 2020, 31, 521-524.	9.0	15
12	Receptor fluoride fine-tuning of fluorescent polymer probe for highly sensitive fluorescence response of methamphetamine vapor. Dyes and Pigments, 2020, 172, 107852.	3.7	15
13	A highly fluorescent post-modified metal organic framework probe for selective, reversible and rapid carbon dioxide detection. Dyes and Pigments, 2020, 172, 107798.	3.7	27
14	A selective and stepwise aggregation of a new fluorescent probe for dinitrate explosive differentiation by self-adaptive host-guest interaction. Science China Chemistry, 2020, 63, 116-125.	8.2	5
15	A new method to synthesize Sub-10 nm CaF2: Nd3+ nanoparticles and fluorescent enhancement via Li+ ions or Ce3+ ions doping. Dyes and Pigments, 2020, 175, 108129.	3.7	7
16	More Interaction Sites and Enhanced Fluorescence for Highly Sensitive Fluorescence Detection of Methamphetamine Vapor via Sidechain Terminal Functionalization of Conjugated Polymers. ChemistrySelect, 2020, 5, 8328-8337.	1.5	2
17	Reactivity triggered by an organic microcrystal interface: a case study involving an environmentally benign, aromatic boric acid reaction. Chemical Communications, 2020, 56, 11114-11117.	4.1	1
18	Preâ€Polymerization Enables Controllable Synthesis of Nanosheetâ€Based Porphyrin Polymers towards Highâ€Performance Liâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 10433-10438.	3.3	13

#	Article	IF	CITATIONS
19	Block Copolymerâ€Directed Synthesis of Conjugated Polyimine Nanospheres with Multichambered Mesopores. Macromolecular Chemistry and Physics, 2020, 221, 2000061.	2.2	5
20	Constructing polymers towards ultrathin nanosheets with dual mesopores and intrinsic photoactivity. Chemical Communications, 2020, 56, 3191-3194.	4.1	7
21	Intelligent sensor array based on machine learning. , 2020, , .		0
22	Self‣tabilized Amorphous Organic Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 16018-16022.	13.8	28
23	Selfâ€Stabilized Amorphous Organic Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2019, 131, 16164-16168.	2.0	4
24	Rational Construction of Highly Tunable Organic Charge-Transfer Complexes for Chemiresistive Sensor Applications. ACS Applied Bio Materials, 2019, 2, 3678-3685.	4.6	5
25	A very sensitive and highly selective organic selector in CNTs composite chemiresistive for efficient differentiation of organic amine vapours. Talanta, 2019, 199, 698-704.	5.5	5
26	A highly fluorescent metal organic framework probe for 2,4,6-trinitrophenol detection via post-synthetic modification of UIO-66-NH2. Dyes and Pigments, 2019, 167, 10-15.	3.7	43
27	Attogram "Meth―Detection Enabled by Selective Organic Crystal Disaggregation via Directed Crystal Level Interactions. Analytical Chemistry, 2018, 90, 1402-1407.	6.5	8
28	Microcrystal induced emission enhancement of a small molecule probe and its use for highly efficient detection of 2,4,6-trinitrophenol in water. Science China Chemistry, 2018, 61, 857-862.	8.2	12
29	Direct and ultrasensitive fluorescence detection of PETN vapor based on a fuorene-dimer probe <i>via</i> a synergic backbone and side-chain tuning. Analytical Methods, 2018, 10, 2567-2574.	2.7	6
30	Highly emissive salicylidene Schiff bases (SASBs) in solution and their application in the detection of the chemical warfare agent mimic diethyl chlorophosphate. Analytical Methods, 2018, 10, 1709-1714.	2.7	9
31	Ultrasensitive and direct fluorescence detection of RDX explosive vapor <i>via</i> side-chain terminal functionalization of a polyfluorene probe. Analytical Methods, 2018, 10, 1695-1702.	2.7	8
32	Simple and Efficient Chromophoric-Fluorogenic Probes for Diethylchlorophosphate Vapor. ACS Sensors, 2018, 3, 1445-1450.	7.8	38
33	Enhanced fluorescence of functionalized silica microsphere based on whispering gallery mode for nitrate ester explosives and hexogen vapour detection. Journal of Materials Chemistry C, 2017, 5, 2114-2122.	5.5	11
34	Hyperbranched polymer based fluorescent probes for ppt level nerve agent simulant vapor detection. Analytical Methods, 2017, 9, 1748-1754.	2.7	26
35	Highly efficient fluorescent and colorimetric sensing of organic amine vapors based on organometal halide perovskite nanostructures. Analytical Methods, 2017, 9, 3804-3809.	2.7	20
36	Design, synthesis and properties of a reactive chromophoric/fluorometric probe for hydrogen peroxide detection. New Journal of Chemistry, 2017, 41, 3790-3797.	2.8	13

#	Article	IF	CITATIONS
37	Highly Efficient Multiple-Anchored Fluorescent Probe for the Detection of Aniline Vapor Based on Synergistic Effect: Chemical Reaction and PET. ACS Sensors, 2017, 2, 687-694.	7.8	34
38	Schiff Base Substituent-Triggered Efficient Deboration Reaction and Its Application in Highly Sensitive Hydrogen Peroxide Vapor Detection. Analytical Chemistry, 2016, 88, 5507-5512.	6.5	32
39	Dual functional and multiple substituted fluorescent star-shaped POSS for a 1 + 1 > 2 explosive vapour detection. RSC Advances, 2016, 6, 51403-51406.	3.6	4
40	Aggregation State Reactivity Activation of Intramolecular Charge Transfer Type Fluorescent Probe and Application in Trace Vapor Detection of Sarin Mimics. ACS Sensors, 2016, 1, 1054-1059.	7.8	28
41	Naked-Eye Visible Solid Illicit Drug Detection at Picogram Level via a Multiple-Anchored Fluorescent Probe. ACS Sensors, 2016, 1, 312-317.	7.8	21
42	Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection. Analytical Chemistry, 2016, 88, 2497-2501.	6.5	100
43	Recent progress in thin film fluorescent probe for organic amine vapour. Science China Chemistry, 2016, 59, 3-15.	8.2	45
44	Fluorescent diphenylfluorene-pyrenyl copolymer with dibenzothiophene-S,S-dioxide and adamantane units for explosive vapor detection. RSC Advances, 2015, 5, 4853-4860.	3.6	5
45	Highly efficient nitrate ester explosive vapor probe based on multiple triphenylaminopyrenyl-substituted POSS. Journal of Materials Chemistry A, 2015, 3, 4820-4826.	10.3	17
46	A sensitive and efficient trifluoroacetyl-based aromatic fluorescent probe for organic amine vapour detection. RSC Advances, 2015, 5, 25125-25131.	3.6	11
47	Reversible and "fingerprint―fluorescence differentiation of organic amine vapours using a single conjugated polymer probe. Polymer Chemistry, 2015, 6, 2179-2182.	3.9	28
48	A simple but highly efficient multi-formyl phenol–amine system for fluorescence detection of peroxide explosive vapour. Chemical Communications, 2015, 51, 10868-10870.	4.1	33
49	Borate ester endcapped fluorescent hyperbranched conjugated polymer for trace peroxide explosive vapor detection. RSC Advances, 2015, 5, 29624-29630.	3.6	19
50	Two luminescent metal–organic frameworks with multifunctional properties for nitroaromatic compounds sensing and photocatalysis. RSC Advances, 2015, 5, 70086-70093.	3.6	40
51	A mild and catalyst-free conversion of solid phase benzylidenemalononitrile/benzylidenemalonate to N-benzylidene-amine and its application for fluorescence detection of primary alkyl amine vapor. Chemical Communications, 2014, 50, 872-874.	4.1	44
52	Highly efficient single fluorescent probe for multiple amine vapours via reaction between amine and aldehyde/dioxaborolane. RSC Advances, 2014, 4, 46631-46634.	3.6	11
53	Femtogram Level Detection of Nitrate Ester Explosives via an 8-Pyrenyl-Substituted Fluorene Dimer Bridged by a 1,6-Hexanyl Unit. ACS Applied Materials & Interfaces, 2014, 6, 8817-8823.	8.0	17
54	Synthesis and two-photon up-conversion sensing property of pyridinylbenzothiadiazole-based chromophores. Dyes and Pigments, 2014, 102, 133-141.	3.7	7

#	Article	IF	CITATIONS
55	A BODIPY dye as a reactive chromophoric/fluorogenic probe for selective and quick detection of vapors of secondary amines. Chemical Communications, 2013, 49, 11266.	4.1	27
56	Fluorene–thiophene-based thin-film fluorescent chemosensor for methamphetamine vapor by thiophene–amine interaction. Sensors and Actuators B: Chemical, 2013, 180, 2-7.	7.8	34
57	Highly sensitive vapor detection of amines with fluorescent conjugated polymer: A novel lasing turn-on sensory mechanism. Sensors and Actuators B: Chemical, 2013, 180, 28-34.	7.8	30
58	Quantum dots/polymer composite system for turn-on fluorescent detection of peroxide hydrogen. , 2013, , .		0
59	Localized Emitting State and Energy Transfer Properties of Quadrupolar Chromophores and (Multi)Branched Derivatives. Journal of Physical Chemistry A, 2012, 116, 8693-8705.	2.5	45
60	A highly efficient fluorescent sensor of explosive peroxide vapor via ZnO nanorod array catalyzed deboronation of pyrenyl borate. Chemical Communications, 2012, 48, 5739.	4.1	29
61	High performance aniline vapor detection based on multi-branched fluorescent triphenylamine-benzothiadiazole derivatives: branch effect and aggregation control of the sensing performance. Journal of Materials Chemistry, 2012, 22, 11629.	6.7	74
62	Sensitivity Gains in Chemosensing by Optical and Structural Modulation of Ordered Assembly Arrays of ZnO Nanorods. ACS Nano, 2011, 5, 4293-4299.	14.6	29
63	Determination of Methamphetamine Hydrochloride by highly fluorescent polyfluorene with NH2-terminated side chains. Synthetic Metals, 2011, 161, 293-297.	3.9	19
64	A novel chemosensor-bipyridyl end capped hyperbranched conjugated polymer. Chinese Chemical Letters, 2011, 22, 725-728.	9.0	9
65	Highly fluorescent intramolecular dimmers of two pyrenyl-substituted fluorenes bridged by 1,6-hexanyl: synthesis, spectroscopic, and self-organized properties. Tetrahedron Letters, 2010, 51, 1317-1321.	1.4	22
66	Turn on fluorescence sensing of vapor phase electron donating amines via tetraphenylporphyrin or metallophenylporphrin doped polyfluorene. Chemical Communications, 2010, 46, 7536.	4.1	53
67	Conjugated Polymerâ^'Titania Nanoparticle Hybrid Films: Random Lasing Action and Ultrasensitive Detection of Explosive Vapors. Journal of Physical Chemistry B, 2010, 114, 4725-4730.	2.6	33
68	Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1,2,5]thiadiazol vinylene as arms. Solar Energy Materials and Solar Cells, 2009, 93, 108-113.	6.2	89
69	Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT. Chemical Physics Letters, 2009, 483, 219-223.	2.6	28
70	Unusual spectroscopic properties of PPE/TiO2 composite and its sensor response to TNT. Synthetic Metals, 2009, 159, 320-324.	3.9	12
71	Solution-Processable Red-Emission Organic Materials Containing Triphenylamine and Benzothiodiazole Units: Synthesis and Applications in Organic Light-Emitting Diodes. Journal of Physical Chemistry B, 2009, 113, 7745-7752.	2.6	63
72	Amorphous molecular material containing bisthiophenyl-benzothiadiazole and triphenylamine with bipolar and low-bandgap characteristics for solar cells. Thin Solid Films, 2008, 516, 5935-5940.	1.8	22

#	Article	IF	CITATIONS
73	Binaphthylâ€Containing Green―and Redâ€Emitting Molecules for Solutionâ€Processable Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3299-3306.	14.9	108
74	Enhanced two-photon absorption of novel four-branched chromophore via vibronic coupling. Tetrahedron Letters, 2008, 49, 5871-5876.	1.4	29
75	Poly(phenylene ethynylene)-coated aligned ZnO nanorod arrays for 2,4,6-trinitrotoluene detection. Applied Physics Letters, 2008, 93, .	3.3	16
76	Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. Journal of Materials Chemistry, 2008, 18, 4085.	6.7	160
77	High open-circuit-voltage organic solar cell based on two solution-processible triphenylamine-containing compounds. Proceedings of SPIE, 2007, , .	0.8	7
78	Photophysical Properties of Photoactive Molecules with Conjugated Pushâ^'Pull Structures. Journal of Physical Chemistry A, 2007, 111, 5806-5812.	2.5	73
79	Synthesis and Photovoltaic Properties of a Solution-Processable Organic Molecule Containing Triphenylamine and DCM Moieties. Journal of Physical Chemistry C, 2007, 111, 8661-8666.	3.1	117
80	Synthesis, crystal structure and spectroscopic properties of an unsymmetrical compound with carbazole and benzothiadiazole units. Tetrahedron Letters, 2007, 48, 4249-4253.	1.4	8
81	Solid-state dye-sensitized photovoltaic device with newly designed small organic molecule as hole-conductor. Chemical Physics Letters, 2007, 445, 259-264.	2.6	25
82	Synthesis and properties of a star-shaped organic material with triphenylamine and N-vinyl carbazole units. Chinese Chemical Letters, 2007, 18, 920-922.	9.0	4
83	Facile synthesis and properties of binaphthyl-containing blue light emitting materials. Journal of Luminescence, 2007, 122-123, 674-677.	3.1	10
84	Organic light-emitting diode based on a carbazole compound. Synthetic Metals, 2006, 156, 824-827.	3.9	18
85	Organic solar cells based on the spin-coated blend films of TPA-th-TPA and PCBM. Solar Energy Materials and Solar Cells, 2006, 90, 1815-1827.	6.2	73
86	A Facile Method for Controlling the Molecular Weight of Hyperbranched Light-Emitting Polymers. Macromolecular Rapid Communications, 2006, 27, 302-305.	3.9	14
87	Properties of an alternating copolymer and its applications in LEDs and photovoltaic cells. Thin Solid Films, 2005, 477, 7-13.	1.8	13
88	Photoinduced partial charge transfer between conjugated polymer and fullerene in solutions. Applied Physics Letters, 2004, 84, 2980-2982.	3.3	8
89	Preparation and photophysical properties of a hyperbranched conjugated polymer-bound gold nanoassembly. Research on Chemical Intermediates, 2004, 30, 527-536.	2.7	3
90	A novel hyperbranched conjugated polymer for light emitting devices. Polymers for Advanced Technologies, 2004, 15, 43-47.	3.2	29

#	Article	IF	CITATIONS
91	Synthesis and photophysical properties of a novel semiconducting polymer. Polymers for Advanced Technologies, 2004, 15, 84-88.	3.2	20
92	Hyperbranched conjugated polymers for photovoltaic applications. Journal of Applied Polymer Science, 2004, 92, 1459-1466.	2.6	20
93	Synthesis, characterization andCis-Trans photoisomerization of a series of hyperbranched conjugated polymers. Polymers for Advanced Technologies, 2003, 14, 297-302.	3.2	4
94	Light-emitting alternating copolymers and their intramolecular charge transfer state. Polymers for Advanced Technologies, 2003, 14, 303-308.	3.2	3
95	Synthesis and photophysical properties of alternating copolymers containing triphenylamine moieties. Polymers for Advanced Technologies, 2003, 14, 309-313.	3.2	8
96	Self-assembled hyperbranched poly(para-Phenylene vinylene) monolayers: fabrication and characterization. Polymers for Advanced Technologies, 2003, 14, 341-348.	3.2	5
97	Synthesis and Characterization of a Water-soluble Hyperbranched Poly(p-phenylene vinylene) (WHPV). Synthetic Metals, 2003, 135-136, 163-164.	3.9	4
98	Synthesis and Characterization of a Novel Hyperbranched Oligomer with 1,3,5-trisphenylbenzene as Cores. Synthetic Metals, 2003, 135-136, 165-166.	3.9	7
99	Electroluminescent and photovoltaic properties of an alternating copolymer containing hole transporting moieties. Synthetic Metals, 2003, 135-136, 167-168.	3.9	2
100	Self-assembly of Nanoparticles via Conjugated Polymer Film Matrix. Synthetic Metals, 2003, 135-136, 821-822.	3.9	2
101	Photo- and electroluminescence from hyperbranched phenylene vinylenes. Synthetic Metals, 2003, 139, 417-423.	3.9	4
102	Synthesis and spectroscopic properties of a series of hyperbranched conjugated molecules with 1,3,5-triphenylbenzene as cores. Journal of Materials Chemistry, 2003, 13, 1085-1089.	6.7	40
103	Photophysics and Applications in Plastic Solar Cells of Conjugated Polymer/Fullerene Composites. Polymers and Polymer Composites, 2003, 11, 679-689.	1.9	7
104	Synthesis and characterization of a series of novel hyperbranched conjugated polymers. Polymers for Advanced Technologies, 2002, 13, 196-200.	3.2	11
105	Synthesis and properties of high efficiency light emitting hyperbranched conjugated polymers. Thin Solid Films, 2002, 417, 183-187.	1.8	24
106	The new approaches to light emitting conjugated polymers—alternating copolymers with hole transport chromophores and hyperbranched polymers. Synthetic Metals, 2001, 119, 179-180.	3.9	13
107	A novel hyperbranched conjugated polymer for electroluminescence application. Synthetic Metals, 2001, 124, 373-377.	3.9	21
108	Formation of Covalently Linked Self-Assembled Films of a Functional Hyperbranched Conjugated Poly(Phenylene Vinylene). Journal of Physical Chemistry B, 2001, 105, 4094-4098.	2.6	24

#	Article	IF	CITATIONS
109	Composition of Hyperbranched Conjugated Polymers with Nanosized Cadmium Sulfide Particles. Langmuir, 2001, 17, 5978-5983.	3.5	29
110	Synthesis and photophysical properties of linear and hyperbranched conjugated polymer. Science Bulletin, 2001, 46, 636-641.	1.7	10
111	Characteristics of Twisted Intramolecular Charge-Transfer State in a Hyperbranched Conjugated Polymer. Macromolecular Rapid Communications, 2001, 22, 1152.	3.9	27
112	Design, synthesis and photophysical properties of a hyperbranched conjugated polymer. Thin Solid Films, 2000, 363, 122-125.	1.8	40