Angelo Trotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bluetooth Mesh Technology for the Joint Monitoring of Indoor Environments and Mobile Device Localization: A Performance Study. , 2022, , .		10
2	A Survey on the Web of Things. IEEE Access, 2022, 10, 47570-47596.	4.2	8
3	Cooperative Cellular UAV-to-Everything (C-U2X) communication based on 5G sidelink for UAV swarms. Computer Communications, 2022, 192, 173-184.	5.1	12
4	MODRON: A Scalable and Interoperable Web of Things Platform for Structural Health Monitoring. , 2021, , .		11
5	WoT Micro Servient: Bringing the W3C Web of Things to Resource Constrained Edge Devices. , 2021, , .		1
6	Design and performance evaluation of a LoRa-based mobile emergency management system (LOCATE). Ad Hoc Networks, 2020, 96, 101993.	5.5	36
7	BEE-DRONES: Ultra low-power monitoring systems based on unmanned aerial vehicles and wake-up radio ground sensors. Computer Networks, 2020, 180, 107425.	5.1	13
8	WoT Store: Managing resources and applications on the web of things. Internet of Things (Netherlands), 2020, 9, 100164.	7.7	18
9	A GPS-Free Flocking Model for Aerial Mesh Deployments in Disaster-Recovery Scenarios. IEEE Access, 2020, 8, 91558-91573.	4.2	23
10	From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things. IEEE Access, 2020, 8, 228118-228135.	4.2	12
11	Discovering Web Things as Services within the Arrowhead Framework. , 2020, , .		5
12	Persistent Crowd Tracking Using Unmanned Aerlal Vehicle Swarms: A Novel Framework for Energy and Mobility Management. IEEE Vehicular Technology Magazine, 2020, 15, 96-103.	3.4	16
13	BEE-DRONES: Energy-efficient Data Collection on Wake-Up Radio-based Wireless Sensor Networks. , 2019, , .		18
14	Practical Indoor Localization via Smartphone Sensor Data Fusion Techniques: A Performance Study. , 2019, , .		12
15	Indoor Location Services through Multi-Source Learning-based Radio Fingerprinting Techniques. , 2019, , .		0
16	FOCUS: Fog Computing in UAS Software-Defined Mesh Networks. IEEE Transactions on Intelligent Transportation Systems, 2019, , 1-11.	8.0	6
17	Deploying W3C Web of Things-Based Interoperable Mash-up Applications for Industry 4.0: A Testbed. Lecture Notes in Computer Science, 2019, , 3-14.	1.3	5
18	The CUSCUS simulator for distributed networked control systems: Architecture and use-cases. Ad Hoc Networks, 2018, 68, 33-47.	5.5	13

ANGELO TROTTA

#	Article	IF	CITATIONS
19	LOCATE: A LoRa-based mObile emergenCy mAnagement sysTEm. , 2018, , .		18
20	When UAVs Ride A Bus: Towards Energy-efficient City-scale Video Surveillance. , 2018, , .		62
21	Joint Coverage, Connectivity, and Charging Strategies for Distributed UAV Networks. IEEE Transactions on Robotics, 2018, 34, 883-900.	10.3	110
22	Dual-Mode Wake-Up Nodes for IoT Monitoring Applications: Measurements and Algorithms. , 2018, , .		8
23	QoS-Based Mobility System for Autonomous Unmanned Aerial Vehicles Wireless Networks. Lecture Notes in Computer Science, 2018, , 233-245.	1.3	0
24	CUSCUS: An integrated simulation architecture for distributed networked control systems. , 2017, , .		11
25	Fly and recharge: Achieving persistent coverage using Small Unmanned Aerial Vehicles (SUAVs). , 2017, ,		13
26	Dynamic Adaptive Video Streaming on Heterogeneous TVWS and Wi-Fi Networks. IEEE/ACM Transactions on Networking, 2017, 25, 3253-3266.	3.8	10
27	CUSCUS: CommUnicationS-control distributed simulator. , 2017, , .		8
28	Enhancing TV White-Spaces Database with Unmanned Aerial Scanning Vehicles (UASVs). , 2016, , .		0
29	STEM-NET: How to deploy a self-organizing network of mobile end-user devices for emergency communication. Computer Communications, 2015, 60, 12-27.	5.1	20
30	Connectivity recovery in post-disaster scenarios through Cognitive Radio swarms. Computer Networks, 2015, 91, 68-89.	5.1	10
31	On 3-dimensional spectrum sharing for TV white and Gray Space networks. , 2015, , .		14
32	Self-organizing aerial mesh networks for emergency communication. , 2014, , .		42
33	Distributed Mobile Femto-Databases for Cognitive Access to TV White Spaces. , 2014, , .		1
34	STEMâ€Net: an evolutionary network architecture for smart and sustainable cities. Transactions on Emerging Telecommunications Technologies, 2014, 25, 21-40.	3.9	26
35	Re-establishing network connectivity in post-disaster scenarios through mobile cognitive radio networks. , 2013, , .		6
36	Machine-to-Machine Communication over TV White Spaces for Smart Metering Applications. , 2013, , .		18

3

#	Article	IF	CITATIONS
37	STEM-mesh: Self-organizing mobile cognitive radio network for disaster recovery operations. , 2013, , .		13
38	Smartphones like stem cells: Cooperation and evolution for emergency communication in post-disaster scenarios. , 2013, , .		9