Emmanuel Guillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658893/publications.pdf

Version: 2024-02-01

43 papers 1,001 citations

20 h-index 434195 31 g-index

44 all docs 44 docs citations

times ranked

44

628 citing authors

#	Article	IF	CITATIONS
1	Uniform and Non-Uniform Pumping Effect on Ce:Nd:YAG Side-Pumped Solar Laser Output Performance. Energies, 2022, 15, 3577.	3.1	17
2	The Influence of Solar Sintering on Copper Heat Exchanger Parts with Controlled 3D-Printed Morphology. Materials, 2022, 15, 3324.	2.9	2
3	40 W Continuous Wave Ce:Nd:YAG Solar Laser through a Fused Silica Light Guide. Energies, 2022, 15, 3998.	3.1	16
4	A multiphysics model of large-scale compact PV–CSP hybrid plants. Applied Energy, 2021, 288, 116644.	10.1	12
5	A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. Energies, 2021, 14, 3192.	3.1	22
6	Ce:Nd:YAG side-pumped solar laser. Journal of Photonics for Energy, 2021, 11, .	1.3	25
7	Ce:Nd:YAG continuous-wave solar-pumped laser. Optik, 2020, 207, 163795.	2.9	22
8	Solar calcination at pilot scale in a continuous flow multistage horizontal fluidized bed. Solar Energy, 2020, 207, 367-378.	6.1	32
9	Simultaneous solar laser emissions from three Nd:YAG rods within a single pump cavity. Solar Energy, 2020, 199, 192-197.	6.1	24
10	Characterization of a pilot fluidized bed reactor for solar calcination processes. AIP Conference Proceedings, 2020, , .	0.4	3
11	Sun backward gazing method for measuring optomechanical errors of solar concentrators: experimental results. Applied Optics, 2020, 59, 9861.	1.8	0
12	A method for experimental thermo-mechanical aging of materials submitted to concentrated solar irradiation. Solar Energy Materials and Solar Cells, 2019, 192, 161-169.	6.2	7
13	Solar furnace temperature control with active cooling. Solar Energy, 2018, 159, 66-77.	6.1	7
14	ARGOS: Solar furnaces flat heliostats tracking error estimation with a direct camera-based vision system. AIP Conference Proceedings, 2018, , .	0.4	5
15	IMPACT: A new device for thermo-mechanical investigation on central receiver materials. AIP Conference Proceedings, 2018, , .	0.4	0
16	Some details about the third rejuvenation of the 1000 kWth solar furnace in Odeillo: Extreme performance heliostats. AIP Conference Proceedings, 2018, , .	0.4	13
17	Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability. Energy, 2018, 165, 620-629.	8.8	109
18	Assessment of Double Modulation Pyrometry as a diagnostic tool for use in concentrated solar facilities. Solar Energy, 2018, 174, 660-668.	6.1	1

#	Article	IF	CITATIONS
19	Stable TEM 00 -mode Nd:YAG solar laser operation by a twisted fused silica light-guide. Optics and Laser Technology, 2017, 97, 1-11.	4.6	14
20	IMPACT: A novel device for in-situ thermo-mechanical investigation of materials under concentrated sunlight. Solar Energy Materials and Solar Cells, 2017, 172, 59-65.	6.2	9
21	Stable solar-pumped TEM00-mode 1064 nm laser emission by a monolithic fused silica twisted light guide. Solar Energy, 2017, 155, 1059-1071.	6.1	23
22	Solar-pumped Nd:YAG laser with 31.5 W/m2 multimode and 7.9 W/m2 TEM00-mode collection efficiencies. Solar Energy Materials and Solar Cells, 2017, 159, 435-439.	6.2	67
23	On-sun first operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid. AIP Conference Proceedings, 2016, , .	0.4	1
24	Control of a solar furnace using active cooling. , 2016, , .		3
25	On-sun operation of a 150 kW th pilot solar receiver using dense particle suspension as heat transfer fluid. Solar Energy, 2016, 137, 463-476.	6.1	58
26	Control of a Solar Furnace using MPC with Integral Action. IFAC-PapersOnLine, 2016, 49, 961-966.	0.9	6
27	High-efficiency solar-pumped TEM 00 -mode Nd:YAG laser. Solar Energy Materials and Solar Cells, 2016, 145, 397-402.	6.2	22
28	TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod. Optics Communications, 2016, 366, 50-56.	2.1	15
29	Solar Pyrolysis of Wood in a Lab-scale Solar Reactor: Influence of Temperature and Sweep Gas Flow Rate on Products Distribution. Energy Procedia, 2015, 69, 1849-1858.	1.8	36
30	5.5ÂW continuous-wave TEM00-mode Nd:YAG solar laser by a light-guide/2V-shaped pump cavity. Applied Physics B: Lasers and Optics, 2015, 121, 473-482.	2.2	23
31	Solar-pumped TEM00 mode Nd:YAG laser by a heliostatâ€"Parabolic mirror system. Solar Energy Materials and Solar Cells, 2015, 134, 305-308.	6.2	23
32	Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat–parabolic mirror system. Applied Optics, 2015, 54, 1970.	1.8	30
33	Validation of a Monte Carlo Integral Formulation Applied to Solar Facility Simulations and Use of Sensitivities. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	20
34	Comparison of 3 Heat Flux Gauges and a Water Calorimeter for Concentrated Solar Irradiance Measurement. Energy Procedia, 2014, 49, 2090-2099.	1.8	31
35	A 40 W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system. Laser Physics, 2013, 23, 065801.	1.2	48
36	Side-pumped continuous-wave Cr:Nd:YAG ceramic solar laser. Applied Physics B: Lasers and Optics, 2013, 111, 305-311.	2.2	28

3

#	Article	IF	CITATIONS
37	SOLFAST, a Ray-Tracing Monte-Carlo software for solar concentrating facilities. Journal of Physics: Conference Series, 2012, 369, 012029.	0.4	26
38	Improvement in solar-pumped Nd:YAG laser beam brightness. Optics and Laser Technology, 2012, 44, 2115-2119.	4.6	50
39	An adaptive temperature control law for a solar furnace. , 2008, , .		6
40	TRANSMITTANCE ENHANCEMENT OF PACKED-BED PARTICULATE MEDIA. Experimental Heat Transfer, 2008, 21, 73-82.	3.2	14
41	A 300kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 190-196.	1.8	109
42	Experimental Determination of the Extinction Coefficient for a Packed-Bed Particulate Medium. Experimental Heat Transfer, 2006, 19, 69-79.	3.2	18
43	Solar Carbothermic Production of Zinc From Zinc Oxide: Solzinc. , 2005, , .		3