Dong Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658736/publications.pdf

Version: 2024-02-01

236925 214800 3,624 47 25 47 h-index citations g-index papers 47 47 47 3159 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The mitigation effects of exogenous melatonin on salinityâ€induced stress in <i>Malus hupehensis</i> Journal of Pineal Research, 2012, 53, 298-306.	7.4	444
2	Longâ€term exogenous application of melatonin delays droughtâ€induced leaf senescence in apple. Journal of Pineal Research, 2013, 54, 292-302.	7.4	409
3	Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry, 2009, 113, 557-562.	8.2	397
4	Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 2015, 66, 669-680.	4.8	371
5	Exogenous melatonin improves <i><scp>M</scp>alus</i> resistance to <scp>M</scp> arssonina apple blotch. Journal of Pineal Research, 2013, 54, 426-434.	7.4	272
6	Transcriptome analysis of an apple ($\langle i\rangle$ Malus $\langle i\rangle$ × $\langle i\rangle$ domestica $\langle i\rangle$) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. Journal of Experimental Botany, 2015, 66, 7359-7376.	4.8	253
7	Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae, 2019, 246, 34-43.	3.6	195
8	Exogenous Melatonin Application Delays Senescence of Kiwifruit Leaves by Regulating the Antioxidant Capacity and Biosynthesis of Flavonoids. Frontiers in Plant Science, 2018, 9, 426.	3.6	151
9	Ascorbate Biosynthesis during Early Fruit Development Is the Main Reason for Its Accumulation in Kiwi. PLoS ONE, 2010, 5, e14281.	2.5	99
10	Melatonin Improves Heat Tolerance in Kiwifruit Seedlings through Promoting Antioxidant Enzymatic Activity and Glutathione S-Transferase Transcription. Molecules, 2018, 23, 584.	3.8	92
11	Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell, Tissue and Organ Culture, 2010, 102, 337-345.	2.3	71
12	Melatonin Alleviates Drought Stress by a Non-Enzymatic and Enzymatic Antioxidative System in Kiwifruit Seedlings. International Journal of Molecular Sciences, 2020, 21, 852.	4.1	64
13	Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 2011, 64, 63-74.	3.4	54
14	Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Molecular Biology Reports, 2012, 39, 10759-10768.	2.3	52
15	Melatonin Accumulation in Sweet Cherry and Its Influence on Fruit Quality and Antioxidant Properties. Molecules, 2020, 25, 753.	3.8	49
16	Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. Molecular Ecology, 2010, 19, 4144-4154.	3.9	46
17	Apple ALMT9 Requires a Conserved C-Terminal Domain for Malate Transport Underlying Fruit Acidity. Plant Physiology, 2020, 182, 992-1006.	4.8	41
18	Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Plant Growth Regulation, 2012, 67, 247-256.	3.4	38

#	Article	IF	CITATIONS
19	Genome-wide identification of members in the YTH domain-containing RNA-binding protein family in apple and expression analysis of their responsiveness to senescence and abiotic stresses. Gene, 2014, 538, 292-305.	2.2	38
20	Isolation and Characterization of a Novel Drought Responsive Gene Encoding a Glycine-rich RNA-binding Protein in Malus prunifolia (Willd.) Borkh Plant Molecular Biology Reporter, 2011, 29, 125-134.	1.8	35
21	Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in â€~Summer Black' grape. Food Chemistry, 2021, 356, 129713.	8.2	35
22	Growth, biomass allocation, and water use efficiency of 31 apple cultivars grown under two water regimes. Agroforestry Systems, 2012, 84, 117-129.	2.0	33
23	Aquaporin expression in response to water-deficit stress in two Malus species: relationship with physiological status and drought tolerance. Plant Growth Regulation, 2013, 70, 187-197.	3.4	33
24	Hydrogen cyanamide induces grape bud endodormancy release through carbohydrate metabolism and plant hormone signaling. BMC Genomics, 2019, 20, 1034.	2.8	28
25	Melatonin improves heat tolerance in <i>Actinidia deliciosa</i> via carotenoid biosynthesis and heat shock proteins expression. Physiologia Plantarum, 2021, 172, 1582-1593.	5.2	26
26	Genome-wide identification and expression profiling of the cystatin gene family in apple (MalusÂ×Âdomestica Borkh.). Plant Physiology and Biochemistry, 2014, 79, 88-97.	5.8	25
27	Changes in the carotenoids profile of two yellow-fleshed kiwifruit cultivars during storage. Postharvest Biology and Technology, 2020, 164, 111162.	6.0	25
28	Evaluation of Malus germplasm resistance to marssonina apple blotch. European Journal of Plant Pathology, 2013, 136, 597-602.	1.7	23
29	SUNRED, a natural extract-based biostimulant, application stimulates anthocyanin production in the skins of grapes. Scientific Reports, 2019, 9, 2590.	3.3	23
30	Phenolic responses of resistant and susceptible Malus plants induced by Diplocarpon mali. Scientia Horticulturae, 2013, 164, 17-23.	3.6	21
31	Leaf micromorphology and sugar may contribute to differences in drought tolerance for two apple cultivars. Plant Physiology and Biochemistry, 2014, 80, 249-258.	5.8	19
32	Genomic Structure, Sub-Cellular Localization, and Promoter Analysis of the Gene Encoding Sorbitol-6-Phosphate Dehydrogenase from Apple. Plant Molecular Biology Reporter, 2012, 30, 904-914.	1.8	16
33	Lignin and Quercetin Synthesis Underlies Berry Russeting in â€~Sunshine Muscat' Grape. Biomolecules, 2020, 10, 690.	4.0	15
34	Characterization and functional validation of \hat{l}^2 -carotene hydroxylase <i>AcBCH</i> genes in <i>Actinidia chinensis</i> . Horticulture Research, 2022, 9, .	6.3	15
35	Effects of intercropping with different <i>Solanum</i> plants on the physiological characteristics and cadmium accumulation of <i>Solanum nigrum</i> International Journal of Environmental Analytical Chemistry, 2021, 101, 2835-2847.	3.3	14
36	PacCOP1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.). Journal of Photochemistry and Photobiology B: Biology, 2020, 203, 111779.	3.8	14

#	Article	IF	CITATIONS
37	Methylation of <i>MYBA1</i> is Associated with the Coloration in "Manicure Finger―Grape Skin. Journal of Agricultural and Food Chemistry, 2021, 69, 15649-15659.	5.2	14
38	Dynamic Changes of Phenolic Compounds and Their Associated Gene Expression Profiles Occurring during Fruit Development and Ripening of the Donghong Kiwifruit. Journal of Agricultural and Food Chemistry, 2020, 68, 11421-11433.	5.2	12
39	24-Epibrassinolide and nitric oxide combined to improve the drought tolerance in kiwifruit seedlings by proline pathway and nitrogen metabolism. Scientia Horticulturae, 2022, 297, 110929.	3.6	12
40	Comparison of the Fruit Volatile Profiles of Five Muscadine Grape Cultivars (Vitis rotundifolia) Tj ETQq0 0 0 rgBT Science, 2021, 12, 728891.	/Overlock 3.6	10 Tf 50 627 11
41	Biochemical and molecular factors governing flesh-color development in two yellow-fleshed kiwifruit cultivars. Scientia Horticulturae, 2021, 280, 109929.	3.6	10
42	Enhancement of in vitro shoot regeneration from leaf explants of apple rootstock G.41. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 263-270.	2.1	7
43	Identification of Suitable Reference Genes for qRT-PCR Normalization in Kiwifruit. Horticulturae, 2022, 8, 170.	2.8	7
44	Dynamic Changes in Ascorbic Acid Content during Fruit Development and Ripening of Actinidia latifolia (an Ascorbate-Rich Fruit Crop) and the Associated Molecular Mechanisms. International Journal of Molecular Sciences, 2022, 23, 5808.	4.1	7
45	Genome-Wide Identification of MYB Transcription Factors and Screening of Members Involved in Stress Response in Actinidia. International Journal of Molecular Sciences, 2022, 23, 2323.	4.1	4
46	Genome-wide identification and expression profiling of the dehydrin gene family in Actinidia chinensis. Scientia Horticulturae, 2021, 280, 109930.	3.6	2
47	Comparative analysis of flavonoids in white and red table grape cultivars during ripening by widely targeted metabolome and transcript levels. Journal of Food Science, 2022, 87, 1650-1661.	3.1	2