Alla A Dolgova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlled green synthesis of hybrid organo-inorganic nanomaterials based on poly(ethylene) Tj ETQq1 1 0.78431	4.rgBT /O	vgrlock 10 T
2	Mesoporous Membrane Materials Based on Ultra-High-Molecular-Weight Polyethylene: From Synthesis to Applied Aspects. Membranes, 2021, 11, 834.	3.0	10
3	Biomedical Organic-Inorganic Nanocomposite Materials Based on High-Density Polyethylene and Ultra-High-Molecular-Weight Polyethylene and Silver Nanoparticles. Russian Journal of General Chemistry, 2021, 91, 2249-2256.	0.8	3
4	Breathable polymeric materials based on highâ€density polyethylene prepared by environmental crazing. Journal of Applied Polymer Science, 2020, 137, 48567.	2.6	5
5	"Green―environmental crazing of polymers in oil-in-water emulsions with high water content. Polymer, 2020, 186, 122020.	3.8	10
6	Hydrophilization of polypropylene films by poly(ethylene oxide) via intercrystallite crazing. Mendeleev Communications, 2020, 30, 507-508.	1.6	8
7	Mechanoresponsive Hard Elastic Materials Based on Semicrystalline Polymers: From Preparation to Applied Properties. ACS Applied Polymer Materials, 2020, 2, 2338-2349.	4.4	12
8	Nanocomposite Polymeric Materials Based on Butyl Rhodamine B Incorporated in Mesoporous Films of High-Density Polyethylene. Russian Journal of General Chemistry, 2020, 90, 737-742.	0.8	0
9	Mesoporous PET-Based Materials with Closed Porosity and Gas-Separating Properties. Russian Journal of General Chemistry, 2019, 89, 763-769.	0.8	0
10	Mesoporous and Nanocomposite Fibrous Materials Based on Poly(ethylene terephthalate) Fibers with High Craze Density via Environmental Crazing: Preparation, Structure, and Applied Properties. ACS Applied Materials & Interfaces, 2019, 11, 18701-18710.	8.0	12
11	Radiation-Chemical Reduction of Copper Ions in Nanoporous Matrices Based on High-Density Polyethylene. Russian Journal of General Chemistry, 2019, 89, 111-116.	0.8	0
12	The effect of characteristic self-generated defects on the mechanical behavior of poly(ethylene) Tj ETQq0 0 0 rgBT	⁻ /Oyerlocl 3.8	2 10 Tf 50 30
13	The effect of preliminary orientation on environmental crazing of high-density polyethylene films. Polymer, 2019, 170, 179-189.	3.8	11
14	Environmental crazing and properties of mesoporous and nanocomposite materials based on poly(tetrafluoroethylene) films. Polymer, 2019, 161, 151-161.	3.8	18
15	Strain-induced fibrillation of glassy polymers. Russian Chemical Bulletin, 2018, 67, 1-22.	1.5	3
16	Phosphorescent Oxygen and Mechanosensitive Nanostructured Materials Based on Hard Elastic Polypropylene Films. ACS Applied Materials & amp; Interfaces, 2017, 9, 13587-13592.	8.0	16
17	The role of the scale factor in the structure-related mechanical behavior of glassy polymers. Colloid Journal, 2017, 79, 715-734.	1.3	2
18	Phosphorescent oxygen sensors produced from polyolefin fibres by solvent-crazing method. Sensors and Actuators B: Chemical, 2016, 230, 434-441.	7.8	17

Alla A Dolgova

#	Article	IF	CITATIONS
19	Specific features of the environmental crazing of poly(ethylene terephthalate) fibers. Polymer, 2015, 56, 256-262.	3.8	23
20	Phosphorescent oxygen sensors produced by spot-crazing of polyphenylenesulfide films. Journal of Materials Chemistry C, 2014, 2, 8035-8041.	5.5	22
21	Oxygen-Sensitive Phosphorescent Nanomaterials Produced from High-Density Polyethylene Films by Local Solvent-Crazing. Analytical Chemistry, 2014, 86, 1917-1923.	6.5	30
22	Development of a stable open-porous structure in the solvent-crazed high-density polyethylene. Inorganic Materials: Applied Research, 2011, 2, 493-498.	0.5	19
23	Preparation method for noble metal-polymer matrix nanocomposites. Colloid Journal, 2010, 72, 464-470.	1.3	6
24	Phosphorescent Oxygen Sensors Based on Nanostructured Polyolefin Substrates. Analytical Chemistry, 2010, 82, 466-468.	6.5	21
25	Crazing of polymers in a supercritical carbon dioxide fluid. Doklady Chemistry, 2009, 428, 238-241.	0.9	3
26	Structure of Polymer Blends Based on Solvent-Crazed Polymers. International Journal of Polymer Analysis and Characterization, 2007, 12, 65-75.	1.9	18
27	The effect of preliminary orientation of polymers via tensile drawing at elevated temperature on solvent crazing. Polymer Science - Series A, 2007, 49, 903-908.	1.0	6