
Katarzyna Kwiatkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD14 recycling modulates LPSâ€induced inflammatory responses of murine macrophages. Traffic, 2022, 23, 310-330.	1.3	5
2	TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2021, 78, 1233-1261.	2.4	535
3	Palm Oil-Rich Diet Affects Murine Liver Proteome and S-Palmitoylome. International Journal of Molecular Sciences, 2021, 22, 13094.	1.8	7
4	Sphingomyelin synthase activity affects TRIF-dependent signaling of Toll-like receptor 4 in cells stimulated with lipopolysaccharide. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158549.	1.2	10
5	Transmembrane adaptor protein WBP1L regulates CXCR4 signalling and murine haematopoiesis. Journal of Cellular and Molecular Medicine, 2020, 24, 1980-1992.	1.6	6
6	Flotillins: At the Intersection of Protein S-Palmitoylation and Lipid-Mediated Signaling. International Journal of Molecular Sciences, 2020, 21, 2283.	1.8	41
7	Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-α synthesis in Mϕs stimulated with LPS. Journal of Leukocyte Biology, 2019, 106, 1285-1301.	1.5	11
8	Insight into the Structural Dynamics of the Lysenin During Prepore-to-Pore Transition Using Hydrogen–Deuterium Exchange Mass Spectrometry. Toxins, 2019, 11, 462.	1.5	5
9	Fine-tuning of the stability of \hat{l}^2 -strands by Y181 in perfringolysin O directs the prepore to pore transition. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 110-122.	1.4	1
10	Threonine 454 phosphorylation in Grainyhead-like 3 is important for its function and regulation by the p38 MAPK pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1002-1011.	1.9	2
11	Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies. Molecular and Cellular Proteomics, 2018, 17, 233-254.	2.5	39
12	UdziaÅ, lipidów w regulacji prozapalnych szlaków sygnaÅ,owych indukowanych przez lipopolisacharyd. Postepy Biochemii, 2018, 64, 175-182.	0.5	10
13	Bis(monoacylglycero)phosphate inhibits TLR4-dependent RANTES production in macrophages. International Journal of Biochemistry and Cell Biology, 2017, 83, 15-26.	1.2	5
14	Association of Lyn kinase with membrane rafts determines its negative influence on LPS-induced signaling. Molecular Biology of the Cell, 2017, 28, 1147-1159.	0.9	18
15	R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1075-1088.	1.4	6
16	Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Frontiers in Immunology, 2017, 8, 2003.	2.2	84
17	Contribution of CD14 and TLR4 to changes of the PI(4,5)P2 level in LPS-stimulated cells. Journal of Leukocyte Biology, 2016, 100, 1363-1373.	1.5	22
18	LPS-induced clustering of CD14 triggers generation of PI(4,5)P2. Journal of Cell Science, 2015, 128, 4096-111.	1.2	22

#	Article	IF	CITATIONS
19	Ceramide generation during curcumin-induced apoptosis is controlled by crosstalk among Bcl-2, Bcl-xL, caspases and glutathione. Cellular Signalling, 2015, 27, 2220-2230.	1.7	22
20	Modification of proâ€inflammatory signaling by dietary components: The plasma membrane as a target. BioEssays, 2015, 37, 789-801.	1.2	18
21	Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2015, 72, 557-581.	2.4	544
22	Crucial Role of Perfringolysin O D1 Domain in Orchestrating Structural Transitions Leading to Membrane-perforating Pores. Journal of Biological Chemistry, 2014, 289, 28738-28752.	1.6	16
23	Toll-Like Receptors and their Contribution to Innate Immunity: Focus on TLR4 Activation by Lipopolysaccharide. Advances in Cell Biology, 2014, 4, 1-23.	1.5	14
24	Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramide accumulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1672-1682.	1.2	35
25	Visualization of cholesterol deposits in lysosomes of Niemann-Pick type C fibroblasts using recombinant perfringolysin O. Orphanet Journal of Rare Diseases, 2014, 9, 64.	1.2	31
26	An interplay between scavenger receptor A and CD14 during activation of J774 cells by high concentrations of LPS. Immunobiology, 2013, 218, 1217-1226.	0.8	23
27	Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environmental Science & Technology, 2013, 47, 14367-14375.	4.6	75
28	CD14 Mediates Binding of High Doses of LPS but Is Dispensable for TNF- <i>α</i> Production. Mediators of Inflammation, 2013, 2013, 1-12.	1.4	35
29	Cell surface ceramide controls translocation of transferrin receptor to clathrin-coated pits. Cellular Signalling, 2012, 24, 677-684.	1.7	19
30	Raft coalescence and FcÎ ³ RIIA activation upon sphingomyelin clustering induced by lysenin. Cellular Signalling, 2012, 24, 1641-1647.	1.7	8
31	LPS induces phosphorylation of actinâ€regulatory proteins leading to actin reassembly and macrophage motility. Journal of Cellular Biochemistry, 2012, 113, 80-92.	1.2	44
32	Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors. Microbial Pathogenesis, 2011, 50, 350-359.	1.3	37
33	Determination of cell surface expression of Toll-like receptor 4 by cellular enzyme-linked immunosorbent assay and radiolabeling. Analytical Biochemistry, 2011, 413, 185-191.	1.1	10
34	One lipid, multiple functions: how various pools of PI(4,5)P2 are created in the plasma membrane. Cellular and Molecular Life Sciences, 2010, 67, 3927-3946.	2.4	97
35	Ceramide and Ceramide 1-Phosphate Are Negative Regulators of TNF-α Production Induced by Lipopolysaccharide. Journal of Immunology, 2010, 185, 6960-6973.	0.4	72
36	Sphingomyelin-rich domains are sites of lysenin oligomerization: Implications for raft studies. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 471-481.	1.4	44

#	Article	IF	CITATIONS
37	Contribution of PIP-5 kinase lα to raft-based FcγRIIA signaling. Experimental Cell Research, 2009, 315, 981-995.	1.2	21
38	Expression of PI(4,5)P ₂ â€binding proteins lowers the PI(4,5)P ₂ level and inhibits Fcl³RIIAâ€mediated cell spreading and phagocytosis. European Journal of Immunology, 2008, 38, 260-272.	1.6	15
39	How <i>Mycobacterium tuberculosis</i> subverts host immune responses. BioEssays, 2008, 30, 943-954.	1.2	52
40	Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 872-879.	1.4	23
41	FcγRII Activation Induces Cell Surface Ceramide Production which Participates in the Assembly of the Receptor Signaling Complex. Cellular Physiology and Biochemistry, 2007, 20, 347-356.	1.1	17
42	Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding. Molecular Membrane Biology, 2007, 24, 121-134.	2.0	46
43	Binding of IgG-Opsonized Particles to Fcl ³ R Is an Active Stage of Phagocytosis That Involves Receptor Clustering and Phosphorylation. Journal of Immunology, 2005, 175, 4450-4457.	0.4	87
44	Cell Surface Ceramide Generation Precedes and Controls FcÎ ³ RII Clustering and Phosphorylation in Rafts. Journal of Biological Chemistry, 2004, 279, 36778-36787.	1.6	99
45	Activated FcÎ ³ RII and signalling molecules revealed in rafts by ultra-structural observations of plasma-membrane sheets. Molecular Membrane Biology, 2004, 21, 101-108.	2.0	18
46	Insights into the Association of FcγRII and TCR with Detergent-Resistant Membrane Domains: Isolation of the Domains in Detergent-Free Density Gradients Facilitates Membrane Fragment Reconstitutionâ€. Biochemistry, 2003, 42, 5358-5367.	1.2	27
47	Phosphorylation of Fcl ³ RIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. Journal of Cell Science, 2003, 116, 537-550.	1.2	95
48	Lyn and Syk Kinases Are Sequentially Engaged in Phagocytosis Mediated by FcγR. Journal of Immunology, 2002, 169, 6787-6794.	0.4	53
49	Ca2+-dependent Translocation of the Calcyclin-binding Protein in Neurons and Neuroblastoma NB-2a Cells. Journal of Biological Chemistry, 2002, 277, 21103-21109.	1.6	51
50	The clustered Fcl ³ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. European Journal of Immunology, 2001, 31, 989-998.	1.6	65
51	Tyrosine phosphorylation/dephosphorylation controls capping of Fc? receptor II in U937 cells. Cytoskeleton, 1999, 42, 298-314.	4.4	12
52	Signaling pathways in phagocytosis. BioEssays, 1999, 21, 422-431.	1.2	168
53	Engagement of Spectrin and Actin in Capping of Fc ^î ³RII Revealed by Studies on Permeabilized U937 Cells. Biochemical and Biophysical Research Communications, 1999, 259, 287-293.	1.0	12
54	Tyrosine phosphorylation and Fcl ³ receptor-mediated phagocytosis. FEBS Letters, 1997, 400, 11-14.	1.3	65

#	Article	IF	CITATIONS
55	Local accumulation of $\hat{l}\pm$ -spectrin-related protein under plasma membrane during capping and phagocytosis inacanthamoeba. , 1997, 36, 253-265.		10
56	Syk kinase, tyrosine-phosphorylated proteins and actin filaments accumulate at forming phagosomes during Fcl ³ receptor-mediated phagocytosis. , 1997, 38, 287-296.		28
57	β-Thymosins Are Not Simple Actin Monomer Buffering Proteins. Journal of Biological Chemistry, 1996, 271, 9223-9230.	1.6	58
58	Actin monomer binding proteins. Current Opinion in Cell Biology, 1995, 7, 102-110.	2.6	193
59	240 kDa immunoanalogue of vertebrate ?-spectrin occurs inParamecium cells. Cytoskeleton, 1992, 23, 111-121.	4.4	8
60	Actin-binding proteins involved in the capping of epidermal growth factor receptors in A431 cells. Experimental Cell Research, 1991, 196, 255-263.	1.2	17