Guorong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658181/publications.pdf

Version: 2024-02-01

113	2,686	27	47
papers	citations	h-index	g-index
113	113	113	3342
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Infant Brain Atlases from Neonates to 1- and 2-Year-Olds. PLoS ONE, 2011, 6, e18746.	1.1	458
2	SharpMean: Groupwise registration guided by sharp mean image and tree-based registration. Neurolmage, 2011, 56, 1968-1981.	2.1	110
3	A generative probability model of joint label fusion for multi-atlas based brain segmentation. Medical Image Analysis, 2014, 18, 881-890.	7.0	107
4	ABSORB: Atlas building by self-organized registration and bundling. Neurolmage, 2010, 51, 1057-1070.	2.1	100
5	Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. Neurolmage, 2015, 106, 34-46.	2.1	95
6	Joint feature-sample selection and robust diagnosis of Parkinson's disease from MRI data. NeuroImage, 2016, 141, 206-219.	2.1	87
7	Unsupervised Deep Feature Learning for Deformable Registration of MR Brain Images. Lecture Notes in Computer Science, 2013, 16, 649-656.	1.0	85
8	Disrupted Brain Functional Network in Internet Addiction Disorder: A Resting-State Functional Magnetic Resonance Imaging Study. PLoS ONE, 2014, 9, e107306.	1.1	72
9	Semi-Supervised Discriminative Classification Robust to Sample-Outliers and Feature-Noises. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 515-522.	9.7	71
10	Multiâ€etlas based representations for Alzheimer's disease diagnosis. Human Brain Mapping, 2014, 35, 5052-5070.	1.9	62
11	Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Medical Image Analysis, 2017, 41, 18-31.	7.0	60
12	Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state. Neurolmage, 2019, 189, 655-666.	2.1	49
13	Sâ€HAMMER: Hierarchical attributeâ€guided, symmetric diffeomorphic registration for MR brain images. Human Brain Mapping, 2014, 35, 1044-1060.	1.9	47
14	Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning. Medical Image Analysis, 2017, 39, 218-230.	7.0	47
15	Building dynamic population graph for accurate correspondence detection. Medical Image Analysis, 2015, 26, 256-267.	7.0	46
16	Featureâ€based groupwise registration by hierarchical anatomical correspondence detection. Human Brain Mapping, 2012, 33, 253-271.	1.9	44
17	Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation. Lecture Notes in Computer Science, 2012, , 94-102.	1.0	43
18	Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson's Disease. Scientific Reports, 2017, 7, 41069.	1.6	42

#	Article	IF	Citations
19	TPS-HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation. NeuroImage, 2010, 49, 2225-2233.	2.1	41
20	Improved image registration by sparse patch-based deformation estimation. NeuroImage, 2015, 105, 257-268.	2.1	40
21	Multi-Band Brain Network Analysis for Functional Neuroimaging Biomarker Identification. IEEE Transactions on Medical Imaging, 2021, 40, 3843-3855.	5.4	35
22	Entorhinal Cortex Atrophy in Early, Drug-naive Parkinson's Disease with Mild Cognitive Impairment. , 2019, 10, 1221.		35
23	Intermediate templates guided groupwise registration of diffusion tensor images. NeuroImage, 2011, 54, 928-939.	2.1	33
24	Registration of longitudinal brain image sequences with implicit template and spatial–temporal heuristics. Neurolmage, 2012, 59, 404-421.	2.1	31
25	Robust multi-atlas label propagation by deep sparse representation. Pattern Recognition, 2017, 63, 511-517.	5.1	31
26	Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning. Brain Imaging and Behavior, 2019, 13, 879-892.	1.1	31
27	Predict brain MR image registration via sparse learning of appearance and transformation. Medical Image Analysis, 2015, 20, 61-75.	7.0	30
28	Attribute vector guided groupwise registration. Neurolmage, 2010, 50, 1485-1496.	2.1	29
29	Dynamic fMRI networks predict success in a behavioral weight loss program among older adults. Neurolmage, 2018, 173, 421-433.	2.1	29
30	Long range early diagnosis of Alzheimer's disease using longitudinal MR imaging data. Medical Image Analysis, 2021, 67, 101825.	7.0	28
31	Machine learning in medical imaging. Computerized Medical Imaging and Graphics, 2015, 41, 1-2.	3.5	27
32	Automatic labeling of MR brain images by hierarchical learning of atlas forests. Medical Physics, 2016, 43, 1175-1186.	1.6	26
33	Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification. Lecture Notes in Computer Science, 2016, 9900, 106-114.	1.0	22
34	Concatenated spatially-localized random forests for hippocampus labeling in adult and infant MR brain images. Neurocomputing, 2017, 229, 3-12.	3 . 5	22
35	Estimating the 4D respiratory lung motion by spatiotemporal registration and superâ€resolution image reconstruction. Medical Physics, 2013, 40, 031710.	1.6	21
36	Robust anatomical landmark detection with application to MR brain image registration. Computerized Medical Imaging and Graphics, 2015, 46, 277-290.	3.5	21

#	Article	IF	Citations
37	Early Diagnosis of Alzheimer's Disease by Joint Feature Selection and Classification on Temporally Structured Support Vector Machine. Lecture Notes in Computer Science, 2016, 9900, 264-272.	1.0	21
38	Learning non-linear patch embeddings with neural networks for label fusion. Medical Image Analysis, 2018, 44, 143-155.	7.0	21
39	Multi-atlas and Multi-modal Hippocampus Segmentation for Infant MR Brain Images by Propagating Anatomical Labels on Hypergraph. Lecture Notes in Computer Science, 2015, 9467, 188-196.	1.0	20
40	Improving imageâ€guided radiation therapy of lung cancer by reconstructing 4Dâ€CT from a single freeâ€breathing 3Dâ€CT on the treatment day. Medical Physics, 2012, 39, 7694-7709.	1.6	19
41	Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy. Lecture Notes in Computer Science, 2016, 9902, 1-9.	1.0	19
42	Scalable joint segmentation and registration framework for infant brain images. Neurocomputing, 2017, 229, 54-62.	3.5	19
43	Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution. Pattern Recognition, 2017, 63, 531-541.	5.1	18
44	Learningâ€based deformable registration for infant <scp>MRI</scp> by integrating random forest with autoâ€context model. Medical Physics, 2017, 44, 6289-6303.	1.6	16
45	Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation. Lecture Notes in Computer Science, 2011, 14, 643-650.	1.0	16
46	Reconstruction of super-resolution lung 4D-CT using patch-based sparse representation. , 2012, , .		14
47	Dynamic Hyper-Graph Inference Framework for Computer-Assisted Diagnosis of Neurodegenerative Diseases. IEEE Transactions on Medical Imaging, 2019, 38, 608-616.	5.4	14
48	Learning Common Harmonic Waves on Stiefel Manifold – A New Mathematical Approach for Brain Network Analyses. IEEE Transactions on Medical Imaging, 2021, 40, 419-430.	5.4	14
49	Progressive multi-atlas label fusion by dictionary evolution. Medical Image Analysis, 2017, 36, 162-171.	7.0	13
50	A Novel Dynamic Hyper-graph Inference Framework for Computer Assisted Diagnosis of Neuro-Diseases. Lecture Notes in Computer Science, 2017, 10265, 158-169.	1.0	13
51	Prediction of Infant MRI Appearance and Anatomical Structure Evolution Using Sparse Patch-Based Metamorphosis Learning Framework. Lecture Notes in Computer Science, 2015, 9467, 197-204.	1.0	12
52	Directed graph based image registration. Computerized Medical Imaging and Graphics, 2012, 36, 139-151.	3.5	11
53	Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph. Lecture Notes in Computer Science, 2016, 10019, 1-9.	1.0	11
54	Segmentor: a tool for manual refinement of 3D microscopy annotations. BMC Bioinformatics, 2021, 22, 260.	1.2	11

#	Article	IF	CITATIONS
55	Learning Best Features for Deformable Registration of MR Brains. Lecture Notes in Computer Science, 2005, 8, 179-187.	1.0	11
56	Hierarchical and symmetric infant image registration by robust longitudinalâ€exampleâ€guided correspondence detection. Medical Physics, 2015, 42, 4174-4189.	1.6	10
57	Personalized Diagnosis for Alzheimer's Disease. Lecture Notes in Computer Science, 2017, 10435, 205-213.	1.0	10
58	Estimating the 4D Respiratory Lung Motion by Spatiotemporal Registration and Building Super-Resolution Image. Lecture Notes in Computer Science, 2011, 14, 532-539.	1.0	10
59	Groupwise registration from exemplar to group mean: Extending HAMMER to groupwise registration. , 2010, 2010, 396-399.		9
60	Detecting Brain State Changes by Geometric Deep Learning of Functional Dynamics on Riemannian Manifold. Lecture Notes in Computer Science, 2021, , 543-552.	1.0	9
61	Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks. Neurolmage, 2021, 230, 117791.	2.1	9
62	Progressive Graph-Based Transductive Learning for Multi-modal Classification of Brain Disorder Disease. Lecture Notes in Computer Science, 2016, 9900, 291-299.	1.0	9
63	Reconstruction of 4D-CT from a Single Free-Breathing 3D-CT by Spatial-Temporal Image Registration. Lecture Notes in Computer Science, 2011, 22, 686-698.	1.0	9
64	Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Images. Lecture Notes in Computer Science, 2012, 15, 90-97.	1.0	9
65	Nonlocal atlasâ€guided multiâ€channel forest learning for human brain labeling. Medical Physics, 2016, 43, 1003-1019.	1.6	8
66	Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longitudinal Data. Lecture Notes in Computer Science, 2015, 9351, 63-71.	1.0	8
67	NuMorph: Tools for cortical cellular phenotyping in tissue-cleared whole-brain images. Cell Reports, 2021, 37, 109802.	2.9	8
68	Groupwise Registration with Sharp Mean. Lecture Notes in Computer Science, 2010, 13, 570-577.	1.0	8
69	Learning Brain Dynamics of Evolving Manifold Functional MRI Data Using Geometric-Attention Neural Network. IEEE Transactions on Medical Imaging, 2022, 41, 2752-2763.	5.4	8
70	A Tensor Statistical Model for Quantifying Dynamic Functional Connectivity. Lecture Notes in Computer Science, 2017, 10265, 398-410.	1.0	7
71	Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution. Lecture Notes in Computer Science, 2015, 9351, 190-197.	1.0	7
72	eHUGS: Enhanced Hierarchical Unbiased Graph Shrinkage for Efficient Groupwise Registration. PLoS ONE, 2016, 11, e0146870.	1,1	6

#	Article	IF	CITATIONS
73	Registration of Longitudinal Image Sequences with Implicit Template and Spatial-Temporal Heuristics. Lecture Notes in Computer Science, 2010, 13, 618-625.	1.0	6
74	Automatic Segmentation of Hippocampus for Longitudinal Infant Brain MR Image Sequence by Spatial-Temporal Hypergraph Learning. Lecture Notes in Computer Science, 2016, 9993, 1-8.	1.0	5
75	Identifying Relationships in Functional and Structural Connectome Data Using aÂHypergraph Learning Method. Lecture Notes in Computer Science, 2016, 9901, 9-17.	1.0	5
76	Multi-Atlas Segmentation of Anatomical Brain Structures Using Hierarchical Hypergraph Learning. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 3061-3072.	7.2	5
77	Characterizing the Propagation Pattern of Neurodegeneration in Alzheimer's Disease by Longitudinal Network Analysis., 2020, 2020, 292-295.		5
78	Detecting Changes of Functional Connectivity by Dynamic Graph Embedding Learning. Lecture Notes in Computer Science, 2020, , 489-497.	1.0	5
79	Cross Modality Microscopy Segmentation via Adversarial Adaptation. Lecture Notes in Computer Science, 2019, 11466, 469-478.	1.0	5
80	Groupwise registration of breast DCE-MR images for accurate tumor measurement., 2011, 2011, 598-601.		4
81	Joint hub identification for brain networks by multivariate graph inference. Medical Image Analysis, 2021, 73, 102162.	7.0	4
82	Multi-graph Fusion for Functional Neuroimaging Biomarker Detection. , 2020, , .		4
83	Uncovering shape signatures of <scp>restingâ€state</scp> functional connectivity by geometric deep learning on Riemannian manifold. Human Brain Mapping, 2022, , .	1.9	4
84	Consistent Multi-Atlas Hippocampus Segmentation for Longitudinal MR Brain Images with Temporal Sparse Representation. Lecture Notes in Computer Science, 2016, 9993, 34-42.	1.0	3
85	Non-Euclidean, convolutional learning on cortical brain surfaces. , 2018, 2018, 527-530.		3
86	A Novel Computational Proxy for Characterizing Cognitive Reserve in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 78, 1217-1228.	1.2	3
87	Groupwise Registration by Hierarchical Anatomical Correspondence Detection. Lecture Notes in Computer Science, 2010, 13, 684-691.	1.0	3
88	Minimizing Joint Risk of Mislabeling for Iterative Patch-Based Label Fusion. Lecture Notes in Computer Science, 2013, 16, 551-558.	1.0	3
89	Multi-Atlas Based Segmentation of Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning. Lecture Notes in Computer Science, 2016, 9993, 51-59.	1.0	3
90	Detecting Brain State Changes via Manifold Mean Shifting. , 2021, , .		3

#	Article	IF	CITATIONS
91	Detecting and Segmenting Text from Natural Scenes with 2-Stage Classification. , 2006, , .		2
92	Joint labeling of multiple regions of interest (ROIS) by enhanced auto context models. , 2015, 2015, 1560-1563.		2
93	Special Issue on High Performance Computing in Bio-medical Informatics. Neuroinformatics, 2018, 16, 283-283.	1.5	2
94	Enriching Statistical Inferences on Brain Connectivity for Alzheimer's Disease Analysis via Latent Space Graph Embedding., 2020, 2020, 1685-1689.		2
95	Joint Discriminative and Representative Feature Selection for Alzheimer's Disease Diagnosis. Lecture Notes in Computer Science, 2016, 10019, 77-85.	1.0	2
96	Efficient Groupwise Registration for Brain MRI by Fast Initialization. Lecture Notes in Computer Science, 2017, 10541, 150-158.	1.0	2
97	Image Super-Resolution by Supervised Adaption of Patchwise Self-similarity from High-Resolution Image. Lecture Notes in Computer Science, 2015, 9467, 10-18.	1.0	2
98	Characterizing the propagation pathway of neuropathological events of Alzheimer's disease using harmonic wavelet analysis. Medical Image Analysis, 2022, 79, 102446.	7.0	2
99	A dynamic tree-based registration could handle possible large deformations among MR brain images. Computerized Medical Imaging and Graphics, 2016, 52, 1-7.	3.5	1
100	Characterizing the Resilience Effect of Neurodegeneration for the Mechanistic Pathway of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 1351-1362.	1.2	1
101	Characterizing Network Selectiveness to the Dynamic Spreading of Neuropathological Events in Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 86, 1805-1816.	1.2	1
102	Improve Brain Registration Using Machine Learning Methods. , 0, , .		0
103	TIMER: Tensor Image Morphing for Elastic Registration. , 2009, , .		0
104	TIMER: Tensor Image Morphing for Elastic Registration. , 2009, , .		0
105	Inter-group image registration by hierarchical graph shrinkage. , 2013, 2013, 1030-1033.		0
106	A Novel Spatio-Temporal Hub Identification Method for Dynamic Functional Networks. , 2020, 2020, 1416-1419.		0
107	Constructing Connectome Atlas by Graph Laplacian Learning. Neuroinformatics, 2021, 19, 233-249.	1.5	0
108	Group-wise Hub Identification by Learning Common Graph Embeddings on Grassmannian Manifold. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	9.7	0

#	Article	IF	CITATIONS
109	Harnessing Group-Sparsity Regularization for Resolution Enhancement of Lung 4D-CT. Lecture Notes in Computer Science, 2013, 16, 139-146.	1.0	O
110	Non-local Atlas-guided Multi-channel Forest Learning for Human Brain Labeling. Lecture Notes in Computer Science, 2015, 9351, 719-726.	1.0	0
111	Hierarchical Multi-modal Image Registration by Learning Common Feature Representations. Lecture Notes in Computer Science, 2015, 9352, 203-211.	1.0	0
112	Automatic Cystocele Severity Grading in Ultrasound by Spatio-Temporal Regression. Lecture Notes in Computer Science, 2016, 9901, 247-255.	1.0	0
113	Dual-Layer Groupwise Registration for Consistent Labeling of Longitudinal Brain Images. Lecture Notes in Computer Science, 2016, 10019, 69-76.	1.0	0