
Paul Va Fine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658149/publications.pdf Version: 2024-02-01

DALLI VA FINE

#	Article	IF	CITATIONS
1	The merging of community ecology and phylogenetic biology. Ecology Letters, 2009, 12, 693-715.	3.0	1,795
2	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	6.0	873
3	Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 2008, 11, 1265-1277.	3.0	527
4	Herbivores Promote Habitat Specialization by Trees in Amazonian Forests. Science, 2004, 305, 663-665.	6.0	503
5	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
6	THE GROWTH–DEFENSE TRADE-OFF AND HABITAT SPECIALIZATION BY PLANTS IN AMAZONIAN FORESTS. Ecology, 2006, 87, S150-S162.	1.5	404
7	Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME Journal, 2013, 7, 1852-1861.	4.4	333
8	Ecological and Evolutionary Drivers of Geographic Variation in Species Diversity. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 369-392.	3.8	328
9	Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography, 2011, 34, 552-565.	2.1	265
10	Evidence for a Timeâ€Integrated Speciesâ€Area Effect on the Latitudinal Gradient in Tree Diversity. American Naturalist, 2006, 168, 796-804.	1.0	235
11	Global Gradients in Vertebrate Diversity Predicted by Historical Area-Productivity Dynamics and Contemporary Environment. PLoS Biology, 2012, 10, e1001292.	2.6	233
12	The invasibility of tropical forests by exotic plants. Journal of Tropical Ecology, 2002, 18, 687-705.	0.5	212
13	Leaf, stem and root tissue strategies across 758 <scp>N</scp> eotropical tree species. Functional Ecology, 2012, 26, 1153-1161.	1.7	172
14	Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biology, 2011, 17, 2677-2688.	4.2	160
15	Environmental factors predict community functional composition in <scp>A</scp> mazonian forests. Journal of Ecology, 2014, 102, 145-155.	1.9	132
16	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	1.9	131
17	The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution; International Journal of Organic Evolution, 2005, 59, 1464-78.	1.1	122
18	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	1.6	113

Paul Va Fine

#	Article	IF	CITATIONS
19	A Floristic Study of the White-Sand Forests of Peru ¹ . Annals of the Missouri Botanical Garden, 2010, 97, 283-305.	1.3	110
20	INVESTIGATING PROCESSES OF NEOTROPICAL RAIN FOREST TREE DIVERSIFICATION BY EXAMINING THE EVOLUTION AND HISTORICAL BIOGEOGRAPHY OF THE PROTIEAE (BURSERACEAE). Evolution; International Journal of Organic Evolution, 2014, 68, 1988-2004.	1.1	98
21	Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees. Ecology, 2013, 94, 1764-1775.	1.5	91
22	Wood specific gravity and anatomy of branches and roots in 113 <scp>A</scp> mazonian rainforest tree species across environmental gradients. New Phytologist, 2014, 202, 79-94.	3.5	89
23	Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nature Ecology and Evolution, 2018, 2, 983-990.	3.4	88
24	To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in ââ,¬Å"Terebinthaceaeââ,¬Â•(Anacardiaceae and Burseraceae). Frontiers in Genetics, 2014, 5, 409.	1.1	75
25	Rapid Simultaneous Estimation of Aboveground Biomass and Tree Diversity Across Neotropical Forests: A Comparison of Field Inventory Methods. Biotropica, 2013, 45, 288-298.	0.8	73
26	Habitat Endemism in Whiteâ€sand Forests: Insights into the Mechanisms of Lineage Diversification and Community Assembly of the Neotropical Flora. Biotropica, 2016, 48, 24-33.	0.8	64
27	Assessing the latitudinal gradient in herbivory. Global Ecology and Biogeography, 2015, 24, 1106-1112.	2.7	63
28	Percentage leaf herbivory across vascular plant species. Ecology, 2014, 95, 788-788.	1.5	53
29	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	1.6	53
30	Low Phylogenetic Beta Diversity and Geographic Neoâ€endemism in Amazonian Whiteâ€sand Forests. Biotropica, 2016, 48, 34-46.	0.8	52
31	Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. Trends in Ecology and Evolution, 2017, 32, 258-267.	4.2	52
32	Herbivory, growth rates, and habitat specialization in tropical tree lineages: implications for Amazonian betaâ€diversity. Ecology, 2012, 93, S195.	1.5	51
33	Dry and hot: the hydraulic consequences of a climate change–type drought for Amazonian trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180209.	1.8	49
34	Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: <i>Protium subserratum</i> (Burseraceae). Molecular Ecology, 2014, 23, 2543-2558.	2.0	48
35	Comparing composition and diversity of parasitoid wasps and plants in an Amazonian rain-forest mosaic. Journal of Tropical Ecology, 2006, 22, 167-176.	0.5	47
36	Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. New Phytologist, 2020, 228, 106-120.	3.5	42

Paul VA Fine

#	Article	IF	CITATIONS
37	A comparison of two common flight interception traps to survey tropical arthropods. ZooKeys, 2012, 216, 43-55.	0.5	41
38	Towards integrative taxonomy in Neotropical botany: disentangling the Pagamea guianensis species complex (Rubiaceae). Botanical Journal of the Linnean Society, 2018, 188, 213-231.	0.8	41
39	Habitat Specialization by Birds in Western Amazonian Whiteâ€sand Forests. Biotropica, 2013, 45, 365-372.	0.8	40
40	The importance of environmental heterogeneity and spatial distance in generating phylogeographic structure in edaphic specialist and generalist tree species of <i>Protium</i> (Burseraceae) across the Amazon Basin. Journal of Biogeography, 2013, 40, 646-661.	1.4	38
41	Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny. Journal of Experimental Botany, 2013, 64, 4081-4088.	2.4	38
42	Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional betaâ€diversity. Ecography, 2018, 41, 1256-1269.	2.1	35
43	Relationships of phytogeography and diversity of tropical tree species with limestone topography in southern Belize. Journal of Biogeography, 2003, 30, 1669-1688.	1.4	30
44	Anthropogenic Burning on the Central California Coast in Late Holocene and Early Historical Times: Findings, Implications, and Future Directions. California Archaeology, 2013, 5, 371-390.	0.1	28
45	Genetic variation within a dominant shrub structures green and brown community assemblages. Ecology, 2014, 95, 387-398.	1.5	28
46	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	1.6	28
47	A New Amazonian Section of Protium (Burseraceae) including both Edaphic Specialist and Generalist Taxa. Studies in Neotropical Burseraceae XVI Systematic Botany, 2011, 36, 939-949.	0.2	27
48	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
49	Leaf synchrony and insect herbivory among tropical tree habitat specialists. Plant Ecology, 2014, 215, 209-220.	0.7	25
50	Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology, 2016, 85, 227-239.	1.3	25
51	Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. Journal of Ecology, 2019, 107, 696-710.	1.9	25
52	THE CONTRIBUTION OF EDAPHIC HETEROGENEITY TO THE EVOLUTION AND DIVERSITY OF BURSERACEAE TREES IN THE WESTERN AMAZON. Evolution; International Journal of Organic Evolution, 2005, 59, 1464.	1.1	24
53	Divergent Secondary Metabolites and Habitat Filtering Both Contribute to Tree Species Coexistence in the Peruvian Amazon. Frontiers in Plant Science, 2018, 9, 836.	1.7	24
54	Genomic and phenotypic divergence unveil microgeographic adaptation in the Amazonian hyperdominant tree <i>Eperua falcata</i> Aubl. (Fabaceae). Molecular Ecology, 2021, 30, 1136-1154.	2.0	24

PAUL VA FINE

#	Article	IF	CITATIONS
55	There's no place like home: seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 2016, 19, 1256-1266.	3.0	23
56	Dominant tree species drive beta diversity patterns in western Amazonia. Ecology, 2019, 100, e02636.	1.5	23
57	Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests. Oecologia, 2017, 183, 327-335.	0.9	22
58	Natural selection maintains species despite frequent hybridization in the desert shrub <i>Encelia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33373-33383.	3.3	21
59	Burseraceae: a model for studying the Amazon flora. Rodriguesia, 2012, 63, 021-030.	0.9	20
60	Habitat-specific divergence of procyanidins in Protium subserratum (Burseraceae). Chemoecology, 2015, 25, 293-302.	0.6	20
61	Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees. American Naturalist, 2017, 190, S105-S122.	1.0	19
62	Importance of dispersal in the assembly of the Neotropical biota. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5829-5831.	3.3	19
63	Generic limits re-visited and an updated sectional classification for Protium (tribe Protieae). Studies in Neotropical Burseraceae XXV. Brittonia, 2018, 70, 418-426.	0.8	18
64	Reestablishment of <i>Protium cordatum</i> (Burseraceae) based on integrative taxonomy. Taxon, 2019, 68, 34-46.	0.4	17
65	Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: Implications for conservation. Ecology and Evolution, 2017, 7, 9639-9650.	0.8	14
66	Diversification of the monoterpene synthase gene family (TPSb) in Protium, a highly diverse genus of tropical trees. Molecular Phylogenetics and Evolution, 2013, 68, 432-442.	1.2	13
67	Revisiting the hyperdominance of Neotropical tree species under a taxonomic, functional and evolutionary perspective. Scientific Reports, 2021, 11, 9585.	1.6	13
68	Exploring the links between secondary metabolites and leaf spectral reflectance in a diverse genus of Amazonian trees. Ecosphere, 2021, 12, e03362.	1.0	12
69	The Role of Natural Enemies in the Germination and Establishment of Pachira (Malvaceae) Trees in the Peruvian Amazon. Biotropica, 2011, 43, 265-269.	0.8	11
70	Biogeographic history and habitat specialization shape floristic and phylogenetic composition across Amazonian forests. Ecological Monographs, 2021, 91, e01473.	2.4	10
71	Population Genetic Structure of California Hazelnut, An Important Food Source for People in Quiroste Valley in the Late Holocene. California Archaeology, 2013, 5, 353-370.	0.1	9
72	Phylogenetic Overdispersion in Lepidoptera Communities of Amazonian Whiteâ€sand Forests. Biotropica, 2016, 48, 101-109.	0.8	9

PAUL VA FINE

#	Article	IF	CITATIONS
73	The contribution of multiple barriers to reproduction between edaphically divergent lineages in the Amazonian tree <i>Protium subserratum</i> (Burseraceae). Ecology and Evolution, 2020, 10, 6646-6663.	0.8	9
74	An Oxidized Squalene Derivative from Protium subserratum Engl. (Engl.) Growing in Peru. Molecules, 2012, 17, 7451-7457.	1.7	7
75	Neotropical Whiteâ€sand Forests: Origins, Ecology and Conservation of a Unique Rain Forest Environment. Biotropica, 2016, 48, 5-6.	0.8	7
76	The contribution of environmental and dispersal filters on phylogenetic and taxonomic beta diversity patterns in Amazonian tree communities. Oecologia, 2021, 196, 1119-1137.	0.9	7
77	Does nitrogen availability have greater control over the formation of tropical heath forests than water stress?A hypothesis based on nitrogen isotope ratios. Acta Amazonica, 2011, 41, 589-592.	0.3	7
78	Leaf Transcriptome Assembly of Protium copal (Burseraceae) and Annotation of Terpene Biosynthetic Genes. Genes, 2019, 10, 392.	1.0	6
79	A review of Neotropical Burseraceae. Revista Brasileira De Botanica, 2022, 45, 103-137.	0.5	6
80	Microsatellite primers for an Amazonian lowland tropical tree, <i>Protium subserratum</i> (Burseraceae). American Journal of Botany, 2012, 99, e465-7.	0.8	5
81	The Amazonasâ€ŧrap: a new method for sampling plantâ€inhabiting arthropod communities in tropical forest understory. Entomologia Experimentalis Et Applicata, 2019, 167, 534-543.	0.7	5
82	Plant Ontogeny, Spatial Distance, and Soil Type Influence Patterns of Relatedness in a Common Amazonian Tree. PLoS ONE, 2013, 8, e62639.	1.1	4
83	Certification of açaÃ-agroforestry increases the conservation potential of the Amazonian tree flora. Agroforestry Systems, 2022, 96, 407-416.	0.9	4
84	Sesenta y cuatro nuevos registros para la flora del Perú a través de inventarios biológicos rápidos en la AmazonÃa peruana. Revista Peruana De Biologia, 2019, 26, 379-392.	0.1	2
85	THE GROWTH–DEFENSE TRADE-OFF AND HABITAT SPECIALIZATION BY PLANTS IN AMAZONIAN FORESTS. , 2006, 87, S150.		2
86	<p>A new species of Protium (Burseraceae) from the Pacific Coast of Costa Rica</p> . Phytotaxa, 2020, 434, 183-194.	0.1	2