Eun-Mi Hur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658086/publications.pdf Version: 2024-02-01

FIIN-MI HIID

#	Article	IF	CITATIONS
1	GSK3 signalling in neural development. Nature Reviews Neuroscience, 2010, 11, 539-551.	10.2	713
2	GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes and Development, 2011, 25, 1968-1981.	5.9	134
3	Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5057-5062.	7.1	127
4	Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends in Neurosciences, 2012, 35, 164-174.	8.6	99
5	Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nature Communications, 2017, 8, 14346.	12.8	90
6	Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. Molecular Neurodegeneration, 2018, 13, 8.	10.8	87
7	Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biology, 2015, 13, e1002152.	5.6	56
8	Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination. Scientific Reports, 2015, 5, 15122.	3.3	53
9	Structural and Molecular Basis for Katanin-Mediated Severing of Glutamylated Microtubules. Cell Reports, 2019, 26, 1357-1367.e5.	6.4	49
10	Brain injury induces HIF-1α-dependent transcriptional activation of LRRK2 that exacerbates brain damage. Cell Death and Disease, 2018, 9, 1125.	6.3	39
11	Korea Brain Initiative: Integration and Control of Brain Functions. Neuron, 2016, 92, 607-611.	8.1	31
12	DSCR1 is required for both axonal growth cone extension and steering. Journal of Cell Biology, 2016, 213, 451-462.	5.2	30
13	Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Clia, 2019, 67, 360-375.	4.9	25
14	Effects of Microtubule Stabilization by Epothilone B Depend on the Type and Age of Neurons. Neural Plasticity, 2016, 2016, 1-12.	2.2	24
15	LRRK2 and membrane trafficking: nexus of Parkinson's disease. BMB Reports, 2019, 52, 533-539.	2.4	23
16	Direct Interaction and Functional Coupling between Human 5-HT6 Receptor and the Light Chain 1 Subunit of the Microtubule-Associated Protein 1B (MAP1B-LC1). PLoS ONE, 2014, 9, e91402.	2.5	21
17	Inflammatory signals induce the expression of tonicity-responsive enhancer binding protein (TonEBP) in microglia. Journal of Neuroimmunology, 2016, 295-296, 21-29.	2.3	19
18	Differential Roles of Glycogen Synthase Kinase 3 Subtypes Alpha and Beta in Cortical Development. Frontiers in Molecular Neuroscience, 2017, 10, 391.	2.9	19

Eun-Mi Hur

#	Article	IF	CITATIONS
19	LRRK2 at the Crossroad of Aging and Parkinson's Disease. Genes, 2021, 12, 505.	2.4	17
20	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	7.6	16
21	Functional Characterization of Resting and Adenovirus-Induced Reactive Astrocytes in Three-Dimensional Culture. Experimental Neurobiology, 2017, 26, 158-167.	1.6	15
22	A Role of Microtubules in Oligodendrocyte Differentiation. International Journal of Molecular Sciences, 2020, 21, 1062.	4.1	15
23	Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease. International Neurourology Journal, 2014, 18, 171.	1.2	13
24	Comparing axon regeneration in male and female mice after peripheral nerve injury. Journal of Neuroscience Research, 2021, 99, 2874-2887.	2.9	9