Ga-Young Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1786-H1795.	1.5	81
2	Hemodynamic Changes Quantified in Abdominal Aortic Aneurysms with Increasing Exercise Intensity Using MR Exercise Imaging and Image-Based Computational Fluid Dynamics. Annals of Biomedical Engineering, 2011, 39, 2186-2202.	1.3	70
3	Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics. Annals of Biomedical Engineering, 2011, 39, 864-883.	1.3	67
4	Geometry and respiratory-induced deformation of abdominal branch vessels and stents after complex endovascular aneurysm repair. Journal of Vascular Surgery, 2015, 61, 875-885.	0.6	45
5	Aortic Arch Vessel Geometries and Deformations in Patients with Thoracic Aortic Aneurysms and Dissections. Journal of Vascular and Interventional Radiology, 2014, 25, 1903-1911.	0.2	29
6	Respiration-induced Deformations of the Superior Mesenteric and Renal Arteries in Patients with Abdominal Aortic Aneurysms. Journal of Vascular and Interventional Radiology, 2013, 24, 1035-1042.	0.2	26
7	Comparative geometric analysis of renal artery anatomy before and after fenestrated or snorkel/chimney endovascular aneurysm repair. Journal of Vascular Surgery, 2016, 63, 922-929.	0.6	25
8	Changes in Geometry and Cardiac Deformation of the Thoracic Aorta after Thoracic Endovascular Aortic Repair. Annals of Vascular Surgery, 2018, 46, 83-89.	0.4	23
9	Three-Dimensional Modeling Analysis of Visceral Arteries and Kidneys during Respiration. Annals of Vascular Surgery, 2016, 34, 250-260.	0.4	20
10	The biomechanical impact of hip movement on iliofemoral venous anatomy and stenting for deep venous thrombosis. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2020, 8, 953-960.	0.9	16
11	A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures. Medical and Biological Engineering and Computing, 2018, 56, 1659-1668.	1.6	14
12	Dynamic Geometric Analysis of the Renal Arteries and Aorta following Complex Endovascular Aneurysm Repair. Annals of Vascular Surgery, 2017, 43, 85-95.	0.4	13
13	Geometric Deformations of the Thoracic Aorta and Supra-Aortic Arch Branch Vessels Following Thoracic Endovascular Aortic Repair. Vascular and Endovascular Surgery, 2018, 52, 173-180.	0.3	13
14	Respiratoryâ€induced 3D deformations of the renal arteries quantified with geometric modeling during inspiration and expiration breathâ€holds of magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 2013, 38, 1325-1332.	1.9	12
15	Optimization of three-dimensional modeling for geometric precision and efficiency for healthy and diseased aortas. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 65-74.	0.9	9
16	Influence of thoracic endovascular aortic repair on true lumen helical morphology for Stanford type B dissections. Journal of Vascular Surgery, 2021, 74, 1499-1507.e1.	0.6	9
17	Quantifying in vivo hemodynamic response to exercise in patients with intermittent claudication and abdominal aortic aneurysms using cine phaseâ€contrast MRI. Journal of Magnetic Resonance Imaging, 2010, 31, 425-429.	1.9	8
18	Thoracic aortic geometry correlates with endograft bird-beaking severity. Journal of Vascular Surgery, 2020, 72, 1196-1205.	0.6	7

GA-YOUNG SUH

#	Article	IF	CITATIONS
19	Multiaxial pulsatile dynamics of the thoracic aorta and impact of thoracic endovascular repair. European Journal of Radiology Open, 2021, 8, 100333.	0.7	7
20	Cardiopulmonary-induced deformations of the thoracic aorta following thoracic endovascular aortic repair. Vascular, 2019, 27, 181-189.	0.4	6
21	Respiratory-induced changes in renovisceral branch vessel morphology after fenestrated thoracoabdominal aneurysm repair with the BeGraft balloon-expandable covered stent. Journal of Vascular Surgery, 2021, 74, 396-403.	0.6	6
22	Stabilization of the Abdominal Aorta During the Cardiac Cycle with the Sac-Anchoring Nellix Device. Annals of Vascular Surgery, 2018, 52, 312.e7-312.e12.	0.4	5
23	Automated Quantification of Diseased Thoracic Aortic Longitudinal Centerline and Surface Curvatures. Journal of Biomechanical Engineering, 2020, 142, .	0.6	5
24	Cardiac Pulsatility– and Respiratory-Induced Deformations of the Renal Arteries and Snorkel Stents After Snorkel Endovascular Aneurysm Sealing. Journal of Endovascular Therapy, 2019, 26, 556-564.	0.8	3
25	Quantification of motion of the thoracic aorta after ascending aortic repair of type-A dissection. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 811-819.	1.7	2
26	Quantification of true lumen helical morphology and chirality in type B aortic dissections. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H901-H911.	1.5	2
27	Impact of renal chimney intra-aortic stent length on branch and end-stent angle in chimney endovascular aneurysm repair and endovascular aneurysm sealing configurations. Vascular, 2023, 31, 234-243.	0.4	1
28	Volumetric analysis demonstrates that true and false lumen remodeling persists for 12Âmonths after thoracic endovascular aortic repair. Journal of Vascular Surgery Cases and Innovative Techniques, 2016, 2, 101-104.	0.3	0