Naoto Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657797/publications.pdf

Version: 2024-02-01

41323 33869 10,275 127 49 99 citations h-index g-index papers 129 129 129 13224 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ATP drives lamina propria TH17 cell differentiation. Nature, 2008, 455, 808-812.	13.7	970
2	A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. Journal of Human Genetics, 2011, 56, 34-40.	1.1	582
3	Cutting Edge: The Common \hat{I}^3 -Chain Is an Indispensable Subunit of the IL-21 Receptor Complex. Journal of Immunology, 2001, 167, 1-5.	0.4	496
4	THE INTERLEUKIN-2 RECEPTOR Î ³ CHAIN: Its Role in the Multiple Cytokine Receptor Complexes and T Cell Development in XSCID. Annual Review of Immunology, 1996, 14, 179-205.	9.5	393
5	OX40 costimulation turns off Foxp3+ Tregs. Blood, 2007, 110, 2501-2510.	0.6	349
6	Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nature Reviews Immunology, 2004, 4, 420-431.	10.6	297
7	Distinct Roles for the OX40-OX40 Ligand Interaction in Regulatory and Nonregulatory T Cells. Journal of Immunology, 2004, 172, 3580-3589.	0.4	271
8	TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathogens, 2016, 12, e1005349.	2.1	271
9	Impairment of Antigen-Presenting Cell Function in Mice Lacking Expression of Ox40 Ligand. Journal of Experimental Medicine, 2000, 191, 365-374.	4.2	268
10	Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nature Genetics, 2005, 37, 365-372.	9.4	264
11	Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. Journal of Reproductive Immunology, 2010, 85, 121-129.	0.8	264
12	The Tohoku Medical Megabank Project: Design and Mission. Journal of Epidemiology, 2016, 26, 493-511.	1.1	236
13	The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). International Immunology, 2009, 21, 843-858.	1.8	207
14	Important Role of Endogenous Erythropoietin System in Recruitment of Endothelial Progenitor Cells in Hypoxia-Induced Pulmonary Hypertension in Mice. Circulation, 2006, 113, 1442-1450.	1.6	195
15	Sharing of the IL-2 receptor \hat{l}^3 chain with the functional IL-9 receptor complex. International Immunology, 1995, 7, 115-120.	1.8	192
16	During Viral Infection of the Respiratory Tract, CD27, 4-1BB, and OX40 Collectively Determine Formation of CD8+ Memory T Cells and Their Capacity for Secondary Expansion. Journal of Immunology, 2005, 175, 1665-1676.	0.4	186
17	Important Role of Erythropoietin Receptor to Promote VEGF Expression and Angiogenesis in Peripheral Ischemia in Mice. Circulation Research, 2007, 100, 662-669.	2.0	173
18	The Common Î ³ -Chain for Multiple Cytokine Receptors. Advances in Immunology, 1995, 59, 225-277.	1.1	154

#	Article	IF	Citations
19	Establishment of a New Sensitive Assay for Anti-Human Aquaporin-4 Antibody in Neuromyelitis Optica. Tohoku Journal of Experimental Medicine, 2006, 210, 307-313.	0.5	153
20	STAM, Signal Transducing Adaptor Molecule, Is Associated with Janus Kinases and Involved in Signaling for Cell Growth and c-myc Induction. Immunity, 1997, 6, 449-457.	6.6	144
21	Grf40, A Novel Grb2 Family Member, Is Involved in T Cell Signaling through Interaction with SLP-76 and LAT. Journal of Experimental Medicine, 1999, 189, 1383-1390.	4.2	143
22	Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. European Journal of Immunology, 2003, 33, 861-869.	1.6	130
23	OX40–OX40 Ligand Interaction in T-Cell-Mediated Immunity and Immunopathology. Advances in Immunology, 2010, 105, 63-98.	1.1	122
24	Constitutive OX40/OX40 Ligand Interaction Induces Autoimmune-Like Diseases. Journal of Immunology, 2002, 169, 4628-4636.	0.4	117
25	Dendritic Cell Expression of OX40 Ligand Acts as a Costimulatory, Not Polarizing, Signal for Optimal Th2 Priming and Memory Induction In Vivo. Journal of Immunology, 2007, 179, 3515-3523.	0.4	116
26	TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist–deficient mice. Journal of Clinical Investigation, 2004, 114, 1603-1611.	3.9	110
27	Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM) Tj ETQq1 1 0. 2020, 49, 18-19m.	784314 r _§ 0.9	gBT /Overloc 107
28	Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. International Immunology, 2006, 18, 269-277.	1.8	104
29	Natural killer (NK)–dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18360-18365.	3.3	99
30	Critical Involvement of OX40 Ligand Signals in the T Cell Priming Events During Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2001, 167, 2991-2999.	0.4	97
31	ER Stress Protein CHOP Mediates Insulin Resistance by Modulating Adipose Tissue Macrophage Polarity. Cell Reports, 2017, 18, 2045-2057.	2.9	96
32	OX40-OX40 Ligand Interaction through T Cell-T Cell Contact Contributes to CD4 T Cell Longevity. Journal of Immunology, 2006, 176, 5975-5987.	0.4	93
33	Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/Âcnull mouse. International Immunology, 2012, 24, 243-252.	1.8	92
34	The TNF–TNFR Family of Co-signal Molecules. Advances in Experimental Medicine and Biology, 2019, 1189, 53-84.	0.8	90
35	OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. Journal of Clinical Investigation, 2007, 117, 3330-3338.	3.9	90
36	Adenovirus Vector-Mediated in Vivo Gene Transfer of OX40 Ligand to Tumor Cells Enhances Antitumor Immunity of Tumor-Bearing Hosts. Cancer Research, 2004, 64, 3281-3287.	0.4	84

#	Article	IF	CITATIONS
37	Statin ameliorates hypoxia-induced pulmonary hypertension associated with down-regulated stromal cell-derived factor-1. Cardiovascular Research, 2009, 81, 226-234.	1.8	82
38	Study Profile of the Tohoku Medical Megabank Community-Based Cohort Study. Journal of Epidemiology, 2021, 31, 65-76.	1.1	81
39	OX40 Costimulation Inhibits Foxp3 Expression and Treg Induction via BATF3-Dependent and Independent Mechanisms. Cell Reports, 2018, 24, 607-618.	2.9	79
40	c-Cbl-Dependent Monoubiquitination and Lysosomal Degradation of gp130. Molecular and Cellular Biology, 2008, 28, 4805-4818.	1.1	76
41	Characterization of the epithelial cell adhesion molecule (EpCAM) < sup > + < /sup > cell population in hepatocellular carcinoma cell lines. Cancer Science, 2010, 101, 2145-2155.	1.7	76
42	Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochemical and Biophysical Research Communications, 2003, 309, 848-856.	1.0	70
43	OX40 Costimulatory Signals Potentiate the Memory Commitment of Effector CD8+ T Cells. Journal of Immunology, 2008, 181, 5990-6001.	0.4	68
44	Inhibition of Tumor Growth and Metastasis by Depletion of Vesicular Sorting Protein Hrs: Its Regulatory Role on E-Cadherin and \hat{l}^2 -Catenin. Cancer Research, 2007, 67, 5162-5171.	0.4	67
45	Differential Requirements for OX40 Signals on Generation of Effector and Central Memory CD4+ T Cells. Journal of Immunology, 2007, 179, 5014-5023.	0.4	62
46	OX40/OX40L Costimulation Affects Induction of Foxp3+ Regulatory T Cells in Part by Expanding Memory T Cells In Vivo. Journal of Immunology, 2008, 181, 3193-3201.	0.4	62
47	A Signal Adaptor SLAM-Associated Protein Regulates Spontaneous Autoimmunity and Fas-Dependent Lymphoproliferation in MRL-Faslpr Lupus Mice. Journal of Immunology, 2006, 176, 395-400.	0.4	56
48	CD40/CD40L expression correlates with the survival of patients with glioblastomas and an augmentation in CD40 signaling enhances the efficacy of vaccinations against glioma models. Neuro-Oncology, 2015, 17, 1453-1462.	0.6	52
49	OX40 (CD134) and OX40 ligand interaction plays an adjuvant role duringin vivo Th2 responses. European Journal of Immunology, 2003, 33, 2372-2381.	1.6	51
50	Human CD4+ central and effector memory T cells produce IL-21: effect on cytokine-driven proliferation of CD4+ T cell subsets. International Immunology, 2007, 19, 1191-1199.	1.8	51
51	Interleukin 2-induced activation of JAK3: Possible involvement in signal transduction for c-mycinduction and cell proliferation. FEBS Letters, 1994, 351, 201-206.	1.3	50
52	TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. Journal of Clinical Investigation, 2017, 127, 2222-2234.	3.9	50
53	Ibudilast, a nonselective phosphodiesterase inhibitor, regulates $Th1/Th2$ balance and NKT cell subset in multiple sclerosis. Multiple Sclerosis Journal, 2004, 10, 494-498.	1.4	49
54	GITR cosignal in ILC2s controls allergic lung inflammation. Journal of Allergy and Clinical Immunology, 2018, 141, 1939-1943.e8.	1.5	49

#	Article	IF	CITATIONS
55	Loss of Hippocampal CA3 Pyramidal Neurons in Mice Lacking STAM1. Molecular and Cellular Biology, 2001, 21, 3807-3819.	1.1	48
56	Signal-Transducing Adaptor Molecules STAM1 and STAM2 Are Required for T-Cell Development and Survival. Molecular and Cellular Biology, 2002, 22, 8648-8658.	1.1	48
57	In vivo assay of human NK-dependent ADCC using NOD/SCID/γcnull (NOG) mice. Biochemical and Biophysical Research Communications, 2010, 399, 733-737.	1.0	46
58	<i>Runx1</i> Deficiency in CD4+ T Cells Causes Fatal Autoimmune Inflammatory Lung Disease Due to Spontaneous Hyperactivation of Cells. Journal of Immunology, 2012, 188, 5408-5420.	0.4	45
59	Consequences of OX40-OX40 ligand interactions in Langerhans cell function: enhanced contact hypersensitivity responses in OX40L-transgenic mice. European Journal of Immunology, 2002, 32, 3326-3335.	1.6	44
60	A Small Molecule Inhibitor to Plasminogen Activator Inhibitor 1 Inhibits Macrophage Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 935-942.	1.1	43
61	Loss of Neurons in the Hippocampus and Cerebral Cortex of AMSH-Deficient Mice. Molecular and Cellular Biology, 2001, 21, 8626-8637.	1.1	42
62	Homeostatic Proliferation of Naive CD4+ T Cells in Mesenteric Lymph Nodes Generates Gut-Tropic Th17 Cells. Journal of Immunology, 2013, 190, 5788-5798.	0.4	42
63	Expression of gp34 (OX40 Ligand) and OX40 on Human T Cell Clones. Japanese Journal of Cancer Research, 2001, 92, 377-382.	1.7	40
64	Differences in the interleukin-2 (IL-2) receptor system in human and mouse: \hat{l}_{\pm} chain is required for formation of the functional mouse IL-2 receptor. European Journal of Immunology, 1995, 25, 3001-3005.	1.6	38
65	The adaptor TRAF5 limits the differentiation of inflammatory CD4+ T cells by antagonizing signaling via the receptor for IL-6. Nature Immunology, 2014, 15, 449-456.	7.0	38
66	Functional Role of Interleukin-4 (IL-4) and IL-7 in the Development of X-Linked Severe Combined Immunodeficiency. Blood, 1999, 93, 607-612.	0.6	37
67	Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models. Neuro-Oncology, 2016, 18, 1120-1128.	0.6	36
68	OX40 ligand plays an important role in the development of atherosclerosis through vasa vasorum neovascularization. Cardiovascular Research, 2010, 88, 539-546.	1.8	35
69	Involvement of osteopontin and its signaling molecule CD44 in clinicopathological features of adult T cell leukemia. Leukemia Research, 2011, 35, 1484-1490.	0.4	35
70	OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: a clue for successful immunotherapy. Molecular Cancer, 2015, 14, 41.	7.9	35
71	Functional Analysis of the Human Interleukin 2 Receptor Î ³ Chain Gene Promoter. Journal of Biological Chemistry, 1995, 270, 7479-7486.	1.6	34
72	TNF Receptor-Associated Factor (TRAF) Signaling Network in CD4 ⁺ T-Lymphocytes. Tohoku Journal of Experimental Medicine, 2015, 236, 139-154.	0.5	34

#	Article	IF	CITATIONS
73	Expanding Role of T-Cell Costimulators in Regulatory T-Cell Function: Recent Advances in Accessory Molecules Expressed on Both Regulatory and Nonregulatory T Cells. Critical Reviews in Immunology, 2004, 24, 251-266.	1.0	31
74	Development of a Multi-Step Leukemogenesis Model of MLL-Rearranged Leukemia Using Humanized Mice. PLoS ONE, 2012, 7, e37892.	1.1	29
75	Identification of AMSH-LP containing a Jab1/MPN domain metalloenzyme motif. Biochemical and Biophysical Research Communications, 2003, 306, 637-643.	1.0	28
76	OX40 and ILâ€7 play synergistic roles in the homeostatic proliferation of effector memory CD4 ⁺ TÂcells. European Journal of Immunology, 2014, 44, 3015-3025.	1.6	28
77	Functional Expression on Human Trophoblasts of Interleukin 4 and Interleukin 7 Receptor Complexes with a Common \hat{l}^3 Chain. Biochemical and Biophysical Research Communications, 1997, 231, 429-434.	1.0	26
78	Serial OX40 Engagement on CD4 ⁺ T Cells and Natural Killer T Cells Causes Allergic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 688-698.	2.5	25
79	TNFR-Associated Factors 2 and 5 Differentially Regulate the Instructive IL-6 Receptor Signaling Required for Th17 Development. Journal of Immunology, 2016, 196, 4082-4089.	0.4	24
80	Expansion of Dysfunctional Tim-3–Expressing Effector Memory CD8+ T Cells during Simian Immunodeficiency Virus Infection in Rhesus Macaques. Journal of Immunology, 2014, 193, 5576-5583.	0.4	23
81	Germ-Free Conditions Modulate Host Purine Metabolism, Exacerbating Adenine-Induced Kidney Damage. Toxins, 2020, 12, 547.	1.5	23
82	Kinetic study of interleukin-2 binding on the reconstituted interleukin-2 receptor complexes including the human \hat{I}^3 chain. European Journal of Immunology, 1993, 23, 2472-2476.	1.6	22
83	Mesenteric lymph nodes contribute to proinflammatory Th17â€cell generation during inflammation of the small intestine in mice. European Journal of Immunology, 2016, 46, 1119-1131.	1.6	21
84	Y Chromosome–Linked B and NK Cell Deficiency in Mice. Journal of Immunology, 2013, 190, 6209-6220.	0.4	20
85	The role of fatty acid binding protein 7 in spinal cord astrocytes in a mouse model of experimental autoimmune encephalomyelitis. Neuroscience, 2019, 409, 120-129.	1.1	19
86	Suppression of thymic development by the dominant-negative form of Gads. International Immunology, 2001, 13, 777-783.	1.8	18
87	Coâ€inhibitory roles for glucocorticoidâ€induced TNF receptor in CD1dâ€dependent natural killer T cells. European Journal of Immunology, 2008, 38, 2229-2240.	1.6	18
88	Bmi1 Regulates lκBα Degradation via Association with the SCF Complex. Journal of Immunology, 2018, 201, 2264-2272.	0.4	18
89	Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood. PLoS ONE, 2014, 9, e111405.	1.1	17
90	<scp>OX</scp> 40 ligand newly expressed on bronchiolar progenitors mediates influenza infection and further exacerbates pneumonia. EMBO Molecular Medicine, 2016, 8, 422-436.	3.3	17

#	Article	IF	Citations
91	Regulation of Interleukin-6 Receptor Signaling by TNF Receptor-Associated Factor 2 and 5 During Differentiation of Inflammatory CD4+ T Cells. Frontiers in Immunology, 2018, 9, 1986.	2.2	17
92	The Curcumin Analog GO-Y030 Controls the Generation and Stability of Regulatory T Cells. Frontiers in Immunology, 2021, 12, 687669.	2.2	16
93	Essential Role of OX40L on B Cells in Persistent Alloantibody Production Following Repeated Alloimmunizations. Journal of Clinical Immunology, 2004, 24, 237-248.	2.0	15
94	Expression of OX40 in muscles of polymyositis and granulomatous myopathy. Journal of the Neurological Sciences, 2002, 194, 29-34.	0.3	14
95	Indispensable roles of OX40L-derived signal and epistatic genetic effect in immune-mediated pathogenesis of spontaneous pulmonary hypertension. BMC Immunology, 2011, 12, 67.	0.9	14
96	Dysregulation of <i>Rnf 213</i> gene contributes to T cell response via antigen uptake, processing, and presentation. Journal of Cellular Physiology, 2021, 236, 7554-7564.	2.0	14
97	Characterization of the \hat{I}^3 c chain among 27 unrelated Japanese patients with X-linked severe combined immunodeficiency (X-SCID). Human Genetics, 2000, 107, 406-408.	1.8	12
98	Three novel mutations in the interleukin-2 receptor? chain gene in four Japanese patients with X-linked severe combined immunodeficiency. Human Genetics, 1995, 96, 681-683.	1.8	10
99	Early production of tumor necrosis factor- \hat{l}_{\pm} by Gr-1+cells and its role in the host defense to pneumococcal infection in lungs. FEMS Immunology and Medical Microbiology, 2010, 58, 182-192.	2.7	10
100	Apurinic/Apyrimidinic Endonuclease 1/Redox Factor-1 (Ape1/Ref-1) Modulates Antigen Presenting Cell-mediated T Helper Cell Type 1 Responses. Journal of Biological Chemistry, 2016, 291, 23672-23680.	1.6	10
101	IQGAP1 restrains Tâ€eell cosignaling mediated by OX40. FASEB Journal, 2020, 34, 540-554.	0.2	9
102	GITR controls intestinal inflammation by suppressing ILâ€15â€dependent NK cell activity. FASEB Journal, 2020, 34, 14820-14831.	0.2	8
103	Fatty acidâ€binding protein 3 regulates differentiation of IgMâ€producing plasma cells. FEBS Journal, 2021, 288, 1130-1141.	2.2	8
104	Phenotypic heterogeneity in individuals with <i>MECOM</i> variants inÂ2 families. Blood Advances, 2022, 6, 5257-5261.	2.5	8
105	Activation of Notch1 promotes development of human CD8+ single positive T cells in humanized mice. Biochemical and Biophysical Research Communications, 2014, 447, 346-351.	1.0	7
106	dbTMM: an integrated database of large-scale cohort, genome and clinical data for the Tohoku Medical Megabank Project. Human Genome Variation, 2021, 8, 44.	0.4	7
107	Potential utility of eGFP-expressing NOG mice (NOG-EGFP) as a high purity cancer sampling system. Journal of Experimental and Clinical Cancer Research, 2012, 31, 55.	3.5	6
108	Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells. Biochemical and Biophysical Research Communications, 2014, 443, 351-356.	1.0	6

#	Article	IF	Citations
109	OX40 ligand regulates splenic CD8â ⁻ ' dendritic cell-induced Th2 responses in vivo. Biochemical and Biophysical Research Communications, 2014, 444, 235-240.	1.0	6
110	CD103 ⁺ CD11b ^{â^'} salivary gland dendritic cells have antigen crossâ€presenting capacity. European Journal of Immunology, 2017, 47, 305-313.	1.6	6
111	TRAF2 and TRAF5 associated with the signal transducing receptor gp130 limit IL-6-driven transphosphorylation of JAK1 through the inhibition of proximal JAKâ \in "JAK interaction. International Immunology, 2018, 30, 291-299.	1.8	6
112	TNF receptor associated factor 5 controls oncostatin M-mediated lung inflammation. Biochemical and Biophysical Research Communications, 2018, 499, 544-550.	1.0	6
113	TNF Receptor–Associated Factor 5 Limits Function of Plasmacytoid Dendritic Cells by Controlling IFN Regulatory Factor 5 Expression. Journal of Immunology, 2019, 203, 1447-1456.	0.4	6
114	Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector. PLoS ONE, 2013, 8, e71594.	1.1	6
115	Redefining the Foreign Antigen and Self-Driven Memory CD4+ T-Cell Compartments via Transcriptomic, Phenotypic, and Functional Analyses. Frontiers in Immunology, 2022, 13, .	2.2	6
116	Xâ€linked severe combined immunodeficiency with γÎT cells. Pediatrics International, 1997, 39, 442-447.	0.2	5
117	Fatty acidâ€binding protein 3 controls contact hypersensitivity through regulating skin dermal Vγ4 + γ∫δT cell in a murine model. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 76, 1776-1788.	2.7	5
118	TNF Receptor–Associated Factor 5 Limits IL-27 Receptor Signaling in CD4+ T Lymphocytes. Journal of Immunology, 2022, , ji2001358.	0.4	5
119	Biallelic variants/mutations of IL1RAP in patients with steroid-sensitive nephrotic syndrome. International Immunology, 2020, 32, 283-292.	1.8	3
120	Functional Role of Interleukin-4 (IL-4) and IL-7 in the Development of X-Linked Severe Combined Immunodeficiency. Blood, 1999, 93, 607-612.	0.6	3
121	The role of common gamma chain in human monocytes in vivo; evaluation from the studies of X-linked severe combined immunodeficiency (X-SCID) carriers and X-SCID patients who underwent cord blood stem cell transplantation. British Journal of Haematology, 2002, 118, 858-863.	1.2	2
122	TRAF5 promotes plasmacytoid dendritic cell development from bone marrow progenitors. Biochemical and Biophysical Research Communications, 2020, 521, 353-359.	1.0	2
123	Costello syndrome model mice with a Hras G12S mutation are susceptible to develop house dust mite-induced atopic dermatitis. Cell Death and Disease, 2020, 11, 617.	2.7	2
124	TRAF5 Deficiency Ameliorates the Severity of Dextran Sulfate Sodium Colitis by Decreasing TRAF2 Expression in Nonhematopoietic Cells. ImmunoHorizons, 2020, 4, 129-139.	0.8	1
125	T-Cell-Depleted CD34+ Cell Transplantation From an HLA-Mismatched Donor in a Low-Birthweight Infant With X-Linked Severe Combined Immunodeficiency. Journal of Pediatric Hematology/Oncology, 2005, 27, 80-84.	0.3	0
126	IQ motif-containing GTPase-activating protein 1 is essential for the optimal maintenance of lung ILC2s. International Immunology, 2020, 32, 233-241.	1.8	0

#	Article	IF	CITATIONS
127	Functional Analysis of the Transcriptional Regulator lî $^{\rm e}$ B-Î $^{\rm q}$ in Intestinal Homeostasis. Digestive Diseases and Sciences, 2021, , 1.	1.1	O