Magdalena Ceborska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/265773/publications.pdf

Version: 2024-02-01

37 478 15 21 g-index

41 41 41 41 737

41 41 41 737 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hydrogen-bonded supramolecular assemblies of folic acid with simple hexoses. Journal of Molecular Structure, 2022, 1250, 131904.	3.6	O
2	Anion Recognition by a Pincer-Type Host Constructed from Two Polyamide Macrocyclic Frameworks Jointed by a Photo-Addressable Azobenzene Switch. Materials, 2022, 15, 692.	2.9	1
3	Chiral Molecular Cages Based on Cyclotriveratrylene and Sucrose Units Connected with p â€Phenylene Linkers. European Journal of Organic Chemistry, 2021, 2021, 897-906.	2.4	5
4	Stabilization of Near Identical Hydrogen Bonded Octameric Water Clusters in Crystal Structures of Three Distinct Non-Charged Polyamide Macrocyclic Host Molecules. Molecules, 2021, 26, 2787.	3.8	2
5	Influence of Hydroxyl Group Position and Substitution Pattern of Hydroxybenzoic Acid on the Formation of Molecular Salts with the Antifolate Pyrimethamine. Crystal Growth and Design, 2021, 21, 6714-6726.	3.0	3
6	Towards More Photostable, Brighter, and Less Phototoxic Chromophores: Synthesis and Properties of Porphyrins Functionalized with Cyclooctatetraene. Chemistry - A European Journal, 2020, 26, 16666-16675.	3.3	9
7	Organolithium-Mediated Postfunctionalization of Thiazolo[3,2- <i>c</i> 1,3,5,2]oxadiazaborinine Fluorescent Dyes. Journal of Organic Chemistry, 2020, 85, 6060-6072.	3.2	13
8	Frontispiece: Towards More Photostable, Brighter, and Less Phototoxic Chromophores: Synthesis and Properties of Porphyrins Functionalized with Cyclooctatetraene. Chemistry - A European Journal, 2020, 26, .	3.3	0
9	Application of the Suzuki–Miyaura Reaction for the Postfunctionalization of the Benzo[4,5]thiazolo[3,2- <i>c</i>][1,3,5,2]oxadiazaborinine Core: An Approach toward Fluorescent Dyes. Journal of Organic Chemistry, 2019, 84, 5614-5626.	3.2	14
10	Complexation of tropane alkaloids by cyclodextrins. Carbohydrate Polymers, 2019, 209, 74-81.	10.2	14
11	Comparative study of molecular recognition of folic acid subunits with cyclodextrins. Carbohydrate Polymers, 2018, 184, 47-56.	10.2	9
12	Solid-state entrapment of water clusters by 26-membered pentamide unclosed cryptands – probing the para-substituent effect. Supramolecular Chemistry, 2018, 30, 464-472.	1.2	7
13	<i>N</i> , <i>O π</i> -Conjugated 4-Substituted 1,3-Thiazole BF ₂ Complexes: Synthesis and Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 1095-1105.	3.2	38
14	Structural investigation of solid state host/guest complexes of native cyclodextrins with monoterpenes and their simple derivatives. Journal of Molecular Structure, 2018, 1165, 62-70.	3.6	6
15	Benzo[4,5]thiazolo[3,2- <i>c</i>][1,3,5,2]oxadiazaborinines: Synthesis, Structural, and Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 12129-12142.	3.2	21
16	Comparative Structural Studies of Four Homologous Thioamidic Unclosed Crytpands: Self-Encapsulation of Lariat Arm, Odd–Even Effects, Anomalously Short S···S Chalcogen Bonding, and More. Crystal Growth and Design, 2017, 17, 701-710.	3.0	13
17	Folate appended cyclodextrins for drug, DNA, and siRNA delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 120, 133-145.	4.3	19
18	Structural investigation of the \hat{l}^2 -cyclodextrin complexes with chiral bicyclic monoterpenes $\hat{a} \in \mathbb{C}$ Influence of the functionality group on the host-guest stoichiometry. Journal of Molecular Structure, 2017, 1145, 204-210.	3.6	1

#	Article	IF	CITATIONS
19	Structural diversity in the host–guest complexes of the antifolate pemetrexed with native cyclodextrins: gas phase, solution and solid state studies. Beilstein Journal of Organic Chemistry, 2017, 13, 2252-2263.	2.2	8
20	Structural investigation of the β-cyclodextrin complexes with linalool and isopinocampheol – Influence of monoterpenes cyclicity on the host–guest stoichiometry. Chemical Physics Letters, 2016, 651, 192-197.	2.6	16
21	Characterization of folic acid/native cyclodextrins host–guest complexes in solution. Journal of Molecular Structure, 2016, 1109, 114-118.	3.6	31
22	Study of \hat{l}^2 -cyclodextrin inclusion complexes with volatile molecules geraniol and $\hat{l}\pm$ -terpineol enantiomers in solid state and in solution. Chemical Physics Letters, 2015, 641, 44-50.	2.6	18
23	Ruthenium-catalyzed one-pot ring-closing metathesis/syn-dihydroxylation in the synthesis of bicyclic iminosugars. Tetrahedron: Asymmetry, 2015, 26, 29-34.	1.8	23
24	Molecular Binding of \hat{l} ±-Cyclodextrin with 1,4-Dioxane in the Solid State. Journal of Carbohydrate Chemistry, 2014, 33, 48-53.	1.1	0
25	Structural Elucidation of Specific Noncovalent Association of Folic Acid with Native Cyclodextrins Using an Ion Mobility Mass Spectrometry and Theoretical Approach. Analytical Chemistry, 2014, 86, 4249-4255.	6.5	25
26	Trapping of Octameric Water Cluster by the Neutral Unclosed Cryptand Environment. Crystal Growth and Design, 2014, 14, 4906-4910.	3.0	11
27	Interactions of Native Cyclodextrins with Biorelevant Molecules in the Solid State: A Review. Current Organic Chemistry, 2014, 18, 1878-1885.	1.6	16
28	\hat{l}^2 -Cyclodextrin as the suitable molecular container for isopulegol enantiomers. Carbohydrate Polymers, 2013, 97, 546-550.	10.2	15
29	Synthesis of Polyhydroxylated Quinolizidines and Azaspiro[4.5]decanes from d-Xylose. Organic Letters, 2013, 15, 6214-6217.	4.6	34
30	Interactions with \hat{l}^2 -cyclodextrin as a way for encapsulation and separation of camphene and fenchene. Carbohydrate Polymers, 2013, 91, 110-114.	10.2	18
31	Rare â€~head-to-tail' arrangement of guest molecules in the inclusion complexes of (+)- and (â^')-menthol with β-cyclodextrin. Chemical Physics Letters, 2012, 553, 64-67.	2.6	17
32	Structural diversity in native cyclodextrins/folic acid complexes – from [2]-rotaxane to exclusion compound. Organic and Biomolecular Chemistry, 2012, 10, 5186.	2.8	22
33	Synthesis of higher carbon sugars from dihydroxyacetone and d-arabinose: an organocatalytic approach. Tetrahedron: Asymmetry, 2012, 23, 1213-1217.	1.8	8
34	Synthesis of New Tripodal Hydroxybenzoic Esters and their Reaction with Tris-(2-aminoethyl)amine under High Pressure Conditions. Letters in Organic Chemistry, 2012, 9, 114-117.	0.5	0
35	Toward dynamic combinatorial libraries of cryptands. Tetrahedron Letters, 2011, 52, 4452-4455.	1.4	13
36	Dynamic combinatorial libraries of macrocycles derived from phthalic aldehydes and $\hat{l}\pm, \hat{l}\%$ -diamines. Tetrahedron, 2010, 66, 9532-9537.	1.9	22

#	Article	IF	CITATIONS
37	High-Pressure Synthesis of Cryptands via Double Amidation Reaction of Diazacoronands with Active Esters of α,ω-Dicarboxylic Acids. Synthesis, 2004, 2004, 369-372.	2.3	2