
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in Gel Polymer Electrolytes for Sodiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	19
2	Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries. Nano Research, 2022, 15, 1424-1432.	10.4	35
3	Organic Cathode Materials for Sodiumâ€ion Batteries: From Fundamental Research to Potential Commercial Application. Advanced Functional Materials, 2022, 32, 2107718.	14.9	75
4	Zeroâ€Strain Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dual onfinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	19.5	26
5	Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. Journal of Energy Chemistry, 2022, 68, 27-34.	12.9	63
6	Tetrakaidecahedron-shaped Cu four-core supramolecular as novel high-performance electrode material for lithium-ion batteries. Chemical Communications, 2022, , .	4.1	0
7	Dualâ€Functional NbN Ultrafine Nanocrystals Enabling Kinetically Boosted Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	14.9	49
8	Poly(ethylene oxide)-ethylene carbonate solid binary electrolyte with higher conductivity, lower operating temperature and fully impregnated separator for all solid-state lithium ion batteries. Composites Communications, 2022, 29, 101026.	6.3	10
9	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	10.3	23
10	Recent advances in "water in salt―electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+,) Tj ETQq0) 0 0 rgBT 12.9	/Qverlock 1
11	Rationally Designed Three‣ayered TiO ₂ @amorphous MoS ₃ @Carbon Hierarchical Microspheres for Efficient Potassium Storage. Small, 2022, 18, e2107819.	10.0	24

12	Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 135149.	12.7	16
13	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
14	An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Research, 2022, 15, 6138-6147.	10.4	5
15	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	14.9	60
16	Highâ€Entropy Carbonitride MAX Phases and Their Derivative MXenes. Advanced Energy Materials, 2022, 12, .	19.5	69
17	N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catalysis, 2022, 12, 616-623.	11.2	65
18	Cobalt sandwich complex-based covalent organic frameworks for chemical fixation of CO2. Science China Materials, 2022, 65, 1377-1382.	6.3	10

#	Article	IF	CITATIONS
19	Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Reports Physical Science, 2022, 3, 100868.	5.6	35
20	Metallosalphen-Based 2D Covalent Organic Frameworks with an Unprecedented tju Topology via K-Shaped Two-in-One Monomers. Chemistry of Materials, 2022, 34, 5888-5895.	6.7	18
21	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Research, 2022, 15, 6184-6191.	10.4	22
22	Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. Advanced Materials, 2022, 34, e2202673.	21.0	93
23	Understanding the Accelerated Sodium-Ion-Transport Mechanism of an Interfacial Modified Polyacrylonitrile Separator. Journal of Physical Chemistry C, 2022, 126, 8238-8247.	3.1	12
24	Recent advances on MXene based materials for energy storage applications. Materials Today Sustainability, 2022, 19, 100163.	4.1	9
25	Effects of Flexible Group Length of Phosphonate Monomers on the Performance of Gel Polymer Electrolytes for Sodium-Ion Batteries with Ultralong Cycling Life. ACS Sustainable Chemistry and Engineering, 2022, 10, 7158-7168.	6.7	5
26	2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2022, 15, .	6.8	35
27	In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Research, 2022, 15, 8972-8982.	10.4	31
28	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. Journal of Energy Chemistry, 2021, 54, 564-570.	12.9	15
29	PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Science China Materials, 2021, 64, 105-114.	6.3	23
30	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 5423-5429.	2.0	17
31	Influence of Surface Polarity on Catalytic Properties of Aminopyridine Functionalized Polyacrylonitrile Fiber Catalyst. Catalysis Letters, 2021, 151, 2056-2064.	2.6	5
32	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 5363-5369.	13.8	67
33	Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. Journal of Energy Chemistry, 2021, 57, 650-655.	12.9	37
34	Recent Progress on the Alloyâ€Based Anode for Sodiumâ€ion Batteries and Potassiumâ€ion Batteries. Small, 2021, 17, e1903194.	10.0	284
35	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	10.0	398
36	2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. Small, 2021, 17, e2005073.	10.0	64

#	Article	IF	CITATIONS
37	Selective Etching Quaternary MAX Phase toward Single Atom Copper Immobilized MXene (Ti ₃ C ₂ Cl _{<i>x</i>}) for Efficient CO ₂ Electroreduction to Methanol. ACS Nano, 2021, 15, 4927-4936.	14.6	139
38	Interface Engineering Based on Multinanoscale Heterojunctions between NiO Quantum Dots, N-Doped Amorphous Carbon and Ni for Advanced Supercapacitor. ACS Applied Energy Materials, 2021, 4, 3221-3230.	5.1	24
39	Donor-acceptor 2D covalent organic frameworks for efficient heterogeneous photocatalytic α-oxyamination. Science China Chemistry, 2021, 64, 827-833.	8.2	46
40	Simple Preparation of Baroque Mn-Based Chalcogenide/Honeycomb-like Carbon Composites for Sodium-Ion Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Fuels, 2021, 35, 6265-6271.	5.1	4
41	90% yield production of polymer nano-memristor for in-memory computing. Nature Communications, 2021, 12, 1984.	12.8	87
42	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Electrochemical Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. Advanced Energy Materials, 2021, 11, 2003905.	19.5	68
43	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie, 2021, 133, 11582-11587.	2.0	17
44	Nonâ€Noble Metalâ€Based Catalysts Applied to Hydrogen Evolution from Hydrolysis of Boron Hydrides. Small Structures, 2021, 2, 2000135.	12.0	19
45	Bimetal CoNi Active Sites on Mesoporous Carbon Nanosheets to Kinetically Boost Lithiumâ^'Sulfur Batteries. Small, 2021, 17, e2100414.	10.0	22
46	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie - International Edition, 2021, 60, 11481-11486.	13.8	124
47	Effects of Comonomers on the Performance of Stable Phosphonate-Based Gel Terpolymer Electrolytes for Sodium-Ion Batteries with Ultralong Cycling Stability. ACS Applied Materials & Interfaces, 2021, 13, 25024-25035.	8.0	11
48	Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Research, 2021, 14, 3466-3473.	10.4	87
49	Oxygen Defects Engineering of VO ₂ · <i>x</i> H ₂ O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. Advanced Functional Materials, 2021, 31, 2103070.	14.9	153
50	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	14.6	272
51	SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage. FlatChem, 2021, 28, 100259.	5.6	23
52	Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. CheM, 2021, 7, 2684-2694.	11.7	77
53	Microstructureâ€Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. Small, 2021, 17, e2102248.	10.0	50
54	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	11.9	36

#	Article	IF	CITATIONS
55	Pre-sodiation strategy for superior sodium storage batteries. Chinese Journal of Chemical Engineering, 2021, 39, 261-268.	3.5	13
56	Dualâ€Functional MgO Nanocrystals Satisfying Both Polysulfides and Li Regulation toward Advanced Lithiumâ^'Sulfur Full Batteries. Small, 2021, 17, e2103744.	10.0	12
57	Advances of electrospun Mo-based nanocomposite fibers as anode materials for supercapacitors. Sustainable Materials and Technologies, 2021, 29, e00302.	3.3	8
58	High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021, 41, 522-545.	18.0	227
59	Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2002893.	19.5	228
60	Recent progress of emerging cathode materials for sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 3735-3764.	5.9	114
61	Programmable Triboelectric Nanogenerators Dependent on the Secondary Building Units in Cadmium Coordination Polymers. Inorganic Chemistry, 2021, 60, 550-554.	4.0	21
62	Amorphous NaVOPO ₄ as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. CCS Chemistry, 2021, 3, 2428-2436.	7.8	34
63	High-rate performance aqueous-based supercapacitors at â^30 °C driven by novel 1D Ni(OH) ₂ nanorods and a two-solute electrolyte. Journal of Materials Chemistry A, 2021, 9, 23860-23872.	10.3	21
64	An effective solid-electrolyte interphase for stable solid-state batteries. CheM, 2021, 7, 3195-3197.	11.7	11
65	Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. Journal of Energy Chemistry, 2020, 46, 71-77.	12.9	75
66	Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, 584-591.	3.3	51
67	Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries. Journal of Solid State Electrochemistry, 2020, 24, 511-519.	2.5	14
68	Bimetal Synergistic Effect Induced High Reversibility of Conversion-Type Ni@NiCo ₂ S ₄ as a Free-Standing Anode for Sodium Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 1435-1442.	4.6	54
69	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. Communications Chemistry, 2020, 3, .	4.5	35
70	The design of CNTs@Ni _{1/3} Co _{2/3} (CO ₃) _{1/2} (OH)·0.11H ₂ O <i>in situ</i> compounded in the nanoscale for all-solid-state supercapacitors. New Journal of Chemistry, 2020, 44, 1185-1189.	2.8	4
71	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochimica Acta, 2020, 332, 135533.	5.2	67
72	A Water Stable, Nearâ€Zeroâ€Strain O3â€Layered Titaniumâ€Based Anode for Long Cycle Sodiumâ€Ion Battery. Advanced Functional Materials, 2020, 30, 1907023.	14.9	36

#	Article	IF	CITATIONS
73	Metal–Semiconductor Phase Twinned Hierarchical MoS ₂ Nanowires with Expanded Interlayers for Sodium″on Batteries with Ultralong Cycle Life. Small, 2020, 16, e1906607.	10.0	74
74	High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy and Environment, 2020, 5, 50-58.	8.7	55
75	TiO ₂ â€Based Heterostructures with Different Mechanism: A General Synergistic Effect toward Highâ€Performance Sodium Storage. Small, 2020, 16, e2004054.	10.0	33
76	Advances of Carbon-Based Materials for Lithium Metal Anodes. Frontiers in Chemistry, 2020, 8, 595972.	3.6	21
77	Electrospun nitrogen-doped carbon nanofibers for electrocatalysis. Sustainable Materials and Technologies, 2020, 26, e00221.	3.3	11
78	Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator. , 2020, 2, 1691-1697.		42
79	N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2020, 7, 3969-3979.	6.0	15
80	Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. Journal of Materials Chemistry A, 2020, 8, 22962-22968.	10.3	22
81	Sandwich Structures Constructed by ZnSeâŠ,N @MoSe ₂ Located in Graphene for Efficient Sodium Storage. Advanced Energy Materials, 2020, 10, 2002298.	19.5	67
82	Editorial: Advanced Carbon Chemistry for Rechargeable Batteries. Frontiers in Chemistry, 2020, 8, 667.	3.6	0
83	Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 9747-9752.	6.7	68
84	Hierarchical Porous Molybdenum Carbide Based Nanomaterials for Electrocatalytic Hydrogen Production. Frontiers in Chemistry, 2020, 8, 426.	3.6	13
85	Layer-by-Layer Stacked (NH ₄) ₂ V ₄ O ₉ ·0.5H ₂ O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage. ACS Applied Energy Materials, 2020, 3, 5343-5352.	5.1	28
86	Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward Highâ€Rate Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2002471.	14.9	158
87	Ultrathin 2D FexCo1-xSe2 nanosheets with enhanced sodium-ion storage performance induced by heteroatom doping effect. Electrochimica Acta, 2020, 353, 136563.	5.2	11
88	Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N,S-co-doped carbon rolls. Nanoscale, 2020, 12, 8493-8501.	5.6	41
89	Recent advances of two–dimensional molybdenum disulfide based materials: Synthesis, modification and applications in energy conversion and storage. Sustainable Materials and Technologies, 2020, 24, e00161.	3.3	12
90	Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Metals, 2020, 39, 1053-1062.	7.1	70

#	Article	IF	CITATIONS
91	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 32771-32777.	8.0	5
92	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-Materiály, 2020, 2, 984-992.	17.3	81
93	Bromineâ€Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. Chemistry - A European Journal, 2020, 26, 5784-5788.	3.3	40
94	Frontispiece: Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, .	3.3	0
95	Suppressing Voltage Fading of Liâ€Rich Oxide Cathode via Building a Wellâ€Protected and Partiallyâ€Protonated Surface by Polyacrylic Acid Binder for Cycleâ€Stable Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904264.	19.5	101
96	The polymerization capability of alkenyl phosphates and application as gel copolymer electrolytes for lithium ion batteries with high flame-retardancy. Reactive and Functional Polymers, 2020, 149, 104535.	4.1	7
97	MXeneâ€Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors. Advanced Energy Materials, 2020, 10, 1903534.	19.5	97
98	Se–C bond and reversible SEI in facile synthesized SnSe2âŠ,3D carbon induced stable anode for sodium-ion batteries. Electrochimica Acta, 2020, 337, 135783.	5.2	37
99	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. Chemical Communications, 2020, 56, 6559-6562.	4.1	23
100	Cotton Clothâ€Induced Flexible Hierarchical Carbon Film for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2136-2144.	3.4	11
101	Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries. Journal of Energy Chemistry, 2020, 50, 387-394.	12.9	47
102	Ni ₁₂ P ₅ nanoparticles bound on graphene sheets for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 10760-10770.	5.6	40
103	Hydrangea-like α-Ni _{1/3} Co _{2/3} (OH) ₂ Reinforced by Ethyl Carbamate "Rivet―for All-Solid-State Supercapacitors with Outstanding Comprehensive Performance. ACS Applied Materials & Interfaces, 2019, 11, 32269-32281.	8.0	63
104	Designed synthesis of porous NiMoO ₄ /C composite nanorods for asymmetric supercapacitors. CrystEngComm, 2019, 21, 5492-5499.	2.6	12
105	Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19709-19718.	10.3	86
106	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 27833-27838.	8.0	40
107	Layered (NH ₄) ₂ V ₆ O ₁₆ ·1.5H ₂ O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19130-19139.	10.3	121
108	One‣tep Transformation from Cu 2 S Nanocrystal to CuS Nanocrystal with Photocatalytic Properties. ChemistrySelect, 2019, 4, 7512-7522.	1.5	7

WEI-HUA CHEN

#	Article	IF	CITATIONS
109	Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. CheM, 2019, 5, 2547-2570.	11.7	110
110	One-Step Construction of MoS _{0.74} Se _{1.26} /N-Doped Carbon Flower-like Hierarchical Microspheres with Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 44342-44351.	8.0	39
111	Highly Electrochemicallyâ€Reversible Mesoporous Na ₂ FePO ₄ F/C as Cathode Material for Highâ€Performance Sodiumâ€Ion Batteries. Small, 2019, 15, e1903723.	10.0	38
112	A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. ACS Applied Materials & Interfaces, 2019, 11, 45126-45132.	8.0	14
113	Heterojunction α-Co(OH)2/α-Ni(OH)2 nanorods arrays on Ni foam with high utilization rate and excellent structure stability for high-performance supercapacitor. Scientific Reports, 2019, 9, 12727.	3.3	23
114	Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage. Journal of Materials Science, 2019, 54, 14825-14833.	3.7	8
115	Bio-inspired nano-engineering of an ultrahigh loading 3D hierarchical Ni@NiCo ₂ S ₄ /Ni ₃ S ₂ electrode for high energy density supercapacitors. Nanoscale, 2019, 11, 1728-1736.	5.6	72
116	Bi-component synergic effect in lily-like CdS/Cu ₇ S ₄ QDs for dye degradation. RSC Advances, 2019, 9, 2441-2450.	3.6	12
117	In Situ Formation of Co ₉ S ₈ Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Applied Materials & Interfaces, 2019, 11, 19218-19226.	8.0	51
118	Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries. Journal of Membrane Science, 2019, 583, 163-170.	8.2	27
119	α-Ni(OH) ₂ /NiS _{1.97} heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale, 2019, 11, 6243-6253.	5.6	106
120	Construction of Highâ€Nuclear Cu x S y Nanocrystalline Catalyst from Highâ€Nuclear Copper Cluster. ChemistrySelect, 2019, 4, 3459-3464.	1.5	0
121	Electrolytes for Dualâ€Carbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	3.4	59
122	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	18.0	90
123	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	12.8	260
124	Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. Journal of Membrane Science, 2019, 577, 137-144.	8.2	55
125	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale, 2019, 11, 21999-22005.	5.6	39
126	Improving the Li–S battery performance by applying a combined interface engineering approach on the Li ₂ S cathode. Journal of Materials Chemistry A, 2019, 7, 27247-27255.	10.3	15

#	Article	IF	CITATIONS
127	Highâ€Performance Flexible Freestanding Anode with Hierarchical 3D Carbonâ€Networks/Fe ₇ S ₈ /Graphene for Applicable Sodiumâ€lon Batteries. Advanced Materials, 2019, 31, e1806664.	21.0	233
128	Understanding Shuttling Effect in Sodium Ion Batteries for the Solution of Capacity Fading: FeS ₂ as an Example. Journal of Physical Chemistry C, 2019, 123, 2775-2782.	3.1	54
129	The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7. Journal of Autoimmunity, 2018, 90, 64-75.	6.5	50
130	Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries. Nano Research, 2018, 11, 4038-4048.	10.4	34
131	Evidence of Rural and Suburban Sources of Urban Haze Formation in China: A Case Study From the Pearl River Delta Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4712-4726.	3.3	24
132	Carbon coated ultrasmall anatase TiO 2 nanocrystal anchored on N,S-RGO as high-performance anode for sodium ion batteries. Green Energy and Environment, 2018, 3, 277-285.	8.7	23
133	Novel safer phosphonate-based gel polymer electrolytes for sodium-ion batteries with excellent cycling performance. Journal of Materials Chemistry A, 2018, 6, 6559-6564.	10.3	63
134	Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochimica Acta, 2018, 259, 20-27.	5.2	72
135	Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources, 2018, 376, 177-183.	7.8	86
136	<i>In situ</i> sulfuration synthesis of flexible PAN-CuS "flowering branch―heterostructures as recyclable catalysts for dye degradation. RSC Advances, 2018, 8, 40589-40594.	3.6	5
137	Development of high-utilization honeycomb-like α-Ni(OH) ₂ for asymmetric supercapacitors with excellent capacitance. RSC Advances, 2018, 8, 37129-37135.	3.6	16
138	Construction of 3D architectures with Ni(HCO ₃) ₂ nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chemical Science, 2018, 9, 8682-8691.	7.4	34
139	The Immunobiology of Receptor Activator for Nuclear Factor Kappa B Ligand and Myeloidâ€Đerived Suppressor Cell Activation in Immunoglobulin G4–Related Sclerosing Cholangitis. Hepatology, 2018, 68, 1922-1936.	7.3	14
140	Synergistic effect of Co3O4@C@MnO2 nanowire heterostructures for high-performance asymmetry supercapacitor with long cycle life. Electrochimica Acta, 2018, 283, 1087-1094.	5.2	41
141	Electrospun Flexible Cellulose Acetate-Based Separators for Sodium-Ion Batteries with Ultralong Cycle Stability and Excellent Wettability: The Role of Interface Chemical Groups. ACS Applied Materials & Interfaces, 2018, 10, 23883-23890.	8.0	84
142	Synergistic Effect Initiating Ni1-xCoxMoO4â^™xH2O as Electrodes for High-Energy-Density Asymmetric Supercapacitors. Electrochimica Acta, 2017, 228, 274-281.	5.2	17
143	Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochimica Acta, 2017, 230, 1-9.	5.2	77
144	High-rate-capability asymmetric supercapacitor device based on lily-like Co ₃ O ₄ nanostructures assembled using nanowires. RSC Advances, 2017, 7, 3752-3759.	3.6	22

#	Article	IF	CITATIONS
145	Sequential partial ion exchange synthesis of composite Ni ₃ S ₂ /Co ₉ S ₈ /NiSe nanoarrays with a lavender-like hierarchical morphology. Inorganic Chemistry Frontiers, 2017, 4, 727-735.	6.0	40
146	Pyrite FeS ₂ microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5332-5341.	10.3	123
147	A Hollow Tubeâ€onâ€Tube Architecture of Carbonâ€Tubeâ€Supported Nickel Cobalt Sulfide Nanotubes for Advanced Supercapacitors. ChemNanoMat, 2017, 3, 269-276.	2.8	39
148	Synergistic effect induced ultrafine SnO ₂ /graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. Journal of Materials Chemistry A, 2017, 5, 10027-10038.	10.3	155
149	Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Research, 2017, 10, 3726-3742.	10.4	85
150	Component-controllable (Ni, Co)Se2(1â^'x)S2x (0 ≤ ≤) acanthospheres for high-performance binder-free supercapacitors. Materials Letters, 2017, 196, 304-307.	2.6	1
151	Urchin-Like Ni _{1/3} Co _{2/3} (CO ₃) _{1/2} (OH)·0.11H ₂ O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow. ACS Applied Materials & amp: Interfaces. 2017. 9, 40655-40670.	8.0	84
152	From α-NaMnO ₂ to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. CrystEngComm, 2016, 18, 3136-3141.	2.6	46
153	Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Advances, 2016, 6, 46523-46530.	3.6	111
154	Fabrication of CuS@Ni ₃ S ₄ ―polyacrylonitrile textile fabric with enhanced reusability for the treatment of dyes wastewater. ChemistrySelect, 2016, 1, 3618-3622.	1.5	6
155	Large-scale Uniform 3D composite Fe ₃ O ₄ @CF for High-performance Supercapacitors Design. ChemistrySelect, 2016, 1, 2909-2915.	1.5	5
156	Hierarchical ternary Ni–Co–Se nanowires for high-performance supercapacitor device design. Dalton Transactions, 2016, 45, 19458-19465.	3.3	112
157	Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS "Branch―with Tunable Catalysis Properties. Scientific Reports, 2016, 6, 30604.	3.3	11
158	Controlled synthesis of concentration gradient LiNi _{0.84} Co _{0.10} Mn _{0.04} Al _{0.02} O _{1.90} F _{0.10 with improved electrochemical properties in Li-ion batteries. RSC Advances, 2016, 6, 58173-58181.})⊲kanap>	17
159	Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. Journal of Environmental Sciences, 2016, 46, 72-82.	6.1	13
160	Controlled synthesis of spherical hierarchical LiNi1â^'xâ^'yCoxAlyO2 (0 <x, a="" cation<br="" novel="" via="" y<0.2)="">exchange process as cathode materials for High-Performance Lithium Batteries. Electrochimica Acta, 2016, 190, 932-938.</x,>	5.2	32
161	An N-doped three dimensional flexible carbon/sulfur cathode for lithium sulfur battery design. Dalton Transactions, 2016, 45, 3305-3309.	3.3	16
162	Elastic porous carbon material supported sulfur cathodes for Li–S battery design. New Journal of Chemistry, 2016, 40, 93-96.	2.8	9

#	Article	IF	CITATIONS
163	Double Metal Ions Synergistic Effect in Hierarchical Multiple Sulfide Microflowers for Enhanced Supercapacitor Performance. ACS Applied Materials & amp; Interfaces, 2015, 7, 4311-4319.	8.0	202
164	How to synthesize pure Li _{2â^'x} FeSi _{1â^'x} P _x O ₄ /C (x =) Tj ETQqQ Transactions, 2015, 44, 14805-14812.	0 0 0 rgBT 3.3	/Overlock 1 7
165	Carambola-like Ni@Ni _{1.5} Co _{1.5} S ₂ for Use in High-Performance Supercapacitor Devices Design. ACS Sustainable Chemistry and Engineering, 2015, 3, 2777-2785.	6.7	86
166	Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium–sulfur batteries. Electrochimica Acta, 2015, 178, 564-570.	5.2	25
167	A nest-like Ni@Ni _{1.4} Co _{1.6} S ₂ electrode for flexible high-performance rolling supercapacitor device design. Journal of Materials Chemistry A, 2015, 3, 20973-20982.	10.3	105
168	Hetero-nuclear coordinated compounds for use in high-performance supercapacitor electrode material design. Inorganic Chemistry Frontiers, 2014, 1, 745-750.	6.0	11
169	Aluminum Insertionâ€Induced Enhanced Performance of Li(Ni _{0.83â€<i>x</i>} Co _{0.10} Mn _{0.07} Al _{<i>y</i>})O ₂ Microspheres for Lithiumâ€Ion Batteries Design. ChemElectroChem, 2014, 1, 601-610.	>3.4	19
170	Ag ⁺ insertion into 3D hierarchical rose-like Cu _{1.8} Se nanocrystals with tunable band gap and morphology genetic. Nanoscale, 2014, 6, 1124-1133.	5.6	28
171	Beneficial metal ion insertion into dandelion-like MnS with enhanced catalytic performance and genetic morphology. RSC Advances, 2014, 4, 19257-19265.	3.6	22
172	Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chemistry of Materials, 2014, 26, 3418-3426.	6.7	311
173	One-pot synthesis and the electrochemical properties of nano-structured nickel selenide materials with hierarchical structure. CrystEngComm, 2013, 15, 2624.	2.6	24
174	Synthesis of Li2FeSiO4/C and its excellent performance in aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10912.	10.3	17
175	3D porous nano/micro nickel sulfides with hierarchical structure: controlled synthesis, structure characterization and electrochemical properties. Dalton Transactions, 2013, 42, 5724.	3.3	60
176	Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries. RSC Advances, 2013, 3, 408-412.	3.6	27
177	3D Cu2â^'xSe nano/micropeony architectures: Large-scale solvothermal synthesis, characterization, and catalytic properties. Thin Solid Films, 2013, 534, 22-27.	1.8	13
178	Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale, 2013, 5, 6589.	5.6	68
179	Large-scale urchin-like micro/nano-structured NiS: controlled synthesis, cation exchange and lithium-ion battery applications. RSC Advances, 2013, 3, 17431.	3.6	41
180	Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm, 2012, 14, 3965.	2.6	77

#	Article	IF	CITATIONS
181	Large-scale stereoscopic structured heazlewoodite microrod arrays and scale-like microsheets for lithium-ion battery applications. RSC Advances, 2012, 2, 6817.	3.6	29
182	3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design. Dalton Transactions, 2012, 41, 12595.	3.3	76
183	Composition control of electrodeposited nickel–cerium hydroxides by tuning the pH at the electrode/solution interface. Journal of Electroanalytical Chemistry, 2012, 670, 62-66.	3.8	11
184	Structural and catalytic properties of Cu ₂ S microrods grown on a threeâ€dimensional substrate. Crystal Research and Technology, 2012, 47, 87-90.	1.3	8
185	Large-scale synthesis and catalysis properties of micro-structured snowflake Cu2S from a single source Cu(II) coordination complex. Materials Letters, 2011, 65, 1785-1787.	2.6	14
186	Cation-exchange induced high power electrochemical properties of core–shell Ni(OH)2@CoOOH. Journal of Power Sources, 2011, 196, 488-494.	7.8	34
187	Response of Two-Dimensional Polymeric Cadmium Ferrocenyl Disulfonates to Heavy Metal Ions. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 847-855.	3.7	2
188	Self-assembly of a Sandwich-like Cadmium Ferrocenyl Coordination Polymer and its Third-Order Nonlinear Optical Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 725-728.	0.6	7
189	A Novel Twoâ€Dimensional Cadmium Polymeric Aminonaphthalene Sulfonate and its Application in the Synthesis of CdS Materials. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 373-376.	1.2	4
190	Synthesis and crystal strcucture of two zinc inclusion complexes. Crystal Research and Technology, 2008, 43, 882-887.	1.3	0
191	Tunable Electrochemical Properties Brought About by Partial Cation Exchange in Hydrotalcite-Like Niâ ʾ'Co/Coâ ̂'Ni Hydroxide Nanosheets. Journal of Physical Chemistry C, 2008, 112, 17471-17477.	3.1	27
192	Use of Cadmium Inclusion Complex for the Preparation of Crystalline CdS Materials. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 673-676.	0.6	1
193	Quantitative study of pH change during LaNi5â^'xAlx (x=0, 0.3) discharge process by SECM. Electrochimica Acta, 2007, 52, 4231-4238.	5.2	3
194	Effects of surface coating of Y(OH)3 on the electrochemical performance of spherical Ni(OH)2. Journal of Power Sources, 2007, 171, 981-989.	7.8	14
195	A novel helical chain zinc(II) coordination polymer derived from both ferrocenecarboxylato and bibenzimidazolyl ligands: synthesis, crystal structure and properties. Journal of Molecular Structure, 2004, 694, 179-183.	3.6	26
196	Solvent Selective Polyacrylonitrile Fiber as a Recyclable Catalyst for the Knoevenagel-Michael Reaction in Water. Catalysis Letters, 0, , 1.	2.6	7
197	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie, 0, , .	2.0	4