Wei-Hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657094/publications.pdf

Version: 2024-02-01

197	9,922	57	88
papers	citations	h-index	g-index
198	198	198	8542 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
2	Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chemistry of Materials, 2014, 26, 3418-3426.	3.2	311
3	Recent Progress on the Alloyâ€Based Anode for Sodiumâ€Ion Batteries and Potassiumâ€Ion Batteries. Small, 2021, 17, e1903194.	5.2	284
4	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7. 3	272
5	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	5.8	260
6	Highâ€Performance Flexible Freestanding Anode with Hierarchical 3D Carbonâ€Networks/Fe ₇ S ₈ /Graphene for Applicable Sodiumâ€ion Batteries. Advanced Materials, 2019, 31, e1806664.	11.1	233
7	Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2002893.	10.2	228
8	High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021, 41, 522-545.	9.5	227
9	Double Metal Ions Synergistic Effect in Hierarchical Multiple Sulfide Microflowers for Enhanced Supercapacitor Performance. ACS Applied Materials & Supercapacitor Performance. ACS Applied Materials & Supercapacitor Performance. ACS Applied Materials & Supercapacitor Performance.	4.0	202
10	Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward Highâ€Rate Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2002471.	7.8	158
11	Synergistic effect induced ultrafine SnO ₂ /graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. Journal of Materials Chemistry A, 2017, 5, 10027-10038.	5.2	155
12	Oxygen Defects Engineering of VO ₂ · <i>x</i> H ₂ O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. Advanced Functional Materials, 2021, 31, 2103070.	7.8	153
13	Selective Etching Quaternary MAX Phase toward Single Atom Copper Immobilized MXene (Ti ₃ C ₂ Cl _{<i>x</i>}) for Efficient CO ₂ Electroreduction to Methanol. ACS Nano, 2021, 15, 4927-4936.	7.3	139
14	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie - International Edition, 2021, 60, 11481-11486.	7.2	124
15	Pyrite FeS ₂ microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5332-5341.	5.2	123
16	Layered (NH $<$ sub $>4<$ /sub $>0<$ sub $>2<$ /sub $>0<$ sub $>6<$ /sub $>0<$ sub $>16<$ /sub $>\hat{A}\cdot 1.5$ H $<$ sub $>2<$ /sub >0 nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19130-19139.	5.2	121
17	Recent progress of emerging cathode materials for sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 3735-3764.	3.2	114
18	Hierarchical ternary Ni–Co–Se nanowires for high-performance supercapacitor device design. Dalton Transactions, 2016, 45, 19458-19465.	1.6	112

#	Article	IF	CITATIONS
19	Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Advances, 2016, 6, 46523-46530.	1.7	111
20	Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. CheM, 2019, 5, 2547-2570.	5.8	110
21	α-Ni(OH) < sub > 2 < /sub > /NiS < sub > 1.97 < /sub > heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale, 2019, 11, 6243-6253.	2.8	106
22	A nest-like Ni@Ni _{1.4} Co _{1.6} S ₂ electrode for flexible high-performance rolling supercapacitor device design. Journal of Materials Chemistry A, 2015, 3, 20973-20982.	5.2	105
23	Suppressing Voltage Fading of Liâ€Rich Oxide Cathode via Building a Wellâ€Protected and Partiallyâ€Protonated Surface by Polyacrylic Acid Binder for Cycleâ€Stable Liâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1904264.	10.2	101
24	MXeneâ€Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors. Advanced Energy Materials, 2020, 10, 1903534.	10.2	97
25	Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. Advanced Materials, 2022, 34, e2202673.	11.1	93
26	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	9.5	90
27	90% yield production of polymer nano-memristor for in-memory computing. Nature Communications, 2021, 12, 1984.	5.8	87
28	Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Research, 2021, 14, 3466-3473.	5.8	87
29	Carambola-like Ni@Ni _{1.5} Co _{1.5} S ₂ for Use in High-Performance Supercapacitor Devices Design. ACS Sustainable Chemistry and Engineering, 2015, 3, 2777-2785.	3.2	86
30	Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources, 2018, 376, 177-183.	4.0	86
31	Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19709-19718.	5.2	86
32	Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Research, 2017, 10, 3726-3742.	5.8	85
33	Urchin-Like Ni _{1/3} Co _{2/3} (CO ₃) _{1/2} (OH)·0.11H ₂ O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow. ACS Applied Materials & Description of the Applied Materials of the Applied Materials and the Applied Materials are applied to the Applied Materials and the Applied Materials are applied to the Applied Materials and the Applied Materials are applied to the Applied Materials and the Applied Materials are applied to the Applied Materials and the Applied Materials are applied to the Applied Materials and the Applied Materials are applied to the Applied Materials and the Ap	4.0	84
34	Electrospun Flexible Cellulose Acetate-Based Separators for Sodium-Ion Batteries with Ultralong Cycle Stability and Excellent Wettability: The Role of Interface Chemical Groups. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23883-23890.	4.0	84
35	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-Materiály, 2020, 2, 984-992.	8.5	81
36	Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm, 2012, 14, 3965.	1.3	77

#	Article	IF	CITATIONS
37	Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochimica Acta, 2017, 230, 1-9.	2.6	77
38	Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. CheM, 2021, 7, 2684-2694.	5.8	77
39	3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design. Dalton Transactions, 2012, 41, 12595.	1.6	76
40	Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. Journal of Energy Chemistry, 2020, 46, 71-77.	7.1	75
41	Organic Cathode Materials for Sodiumâ€lon Batteries: From Fundamental Research to Potential Commercial Application. Advanced Functional Materials, 2022, 32, 2107718.	7.8	75
42	Metal–Semiconductor Phase Twinned Hierarchical MoS ₂ Nanowires with Expanded Interlayers for Sodiumâ€ion Batteries with Ultralong Cycle Life. Small, 2020, 16, e1906607.	5.2	74
43	Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochimica Acta, 2018, 259, 20-27.	2.6	72
44	Bio-inspired nano-engineering of an ultrahigh loading 3D hierarchical Ni@NiCo ₂ S ₄ /Ni ₃ S ₂ electrode for high energy density supercapacitors. Nanoscale, 2019, 11, 1728-1736.	2.8	72
45	Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Metals, 2020, 39, 1053-1062.	3.6	70
46	Highâ€Entropy Carbonitride MAX Phases and Their Derivative MXenes. Advanced Energy Materials, 2022, 12, .	10.2	69
47	Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale, 2013, 5, 6589.	2.8	68
48	Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 9747-9752.	3.2	68
49	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Electrochemical Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. Advanced Energy Materials, 2021, 11, 2003905.	10.2	68
50	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochimica Acta, 2020, 332, 135533.	2.6	67
51	Sandwich Structures Constructed by ZnSeâŠ,N @MoSe ₂ Located in Graphene for Efficient Sodium Storage. Advanced Energy Materials, 2020, 10, 2002298.	10.2	67
52	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 5363-5369.	7.2	67
53	N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catalysis, 2022, 12, 616-623.	5.5	65
54	2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. Small, 2021, 17, e2005073.	5.2	64

#	Article	IF	CITATIONS
55	Novel safer phosphonate-based gel polymer electrolytes for sodium-ion batteries with excellent cycling performance. Journal of Materials Chemistry A, 2018, 6, 6559-6564.	5.2	63
56	Hydrangea-like α-Ni _{1/3} Co _{2/3} (OH) ₂ Reinforced by Ethyl Carbamate "Rivet―for All-Solid-State Supercapacitors with Outstanding Comprehensive Performance. ACS Applied Materials & Diterraces, 2019, 11, 32269-32281.	4.0	63
57	Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. Journal of Energy Chemistry, 2022, 68, 27-34.	7.1	63
58	3D porous nano/micro nickel sulfides with hierarchical structure: controlled synthesis, structure characterization and electrochemical properties. Dalton Transactions, 2013, 42, 5724.	1.6	60
59	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	7.8	60
60	Electrolytes for Dualâ€Carbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	1.7	59
61	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
62	Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. Journal of Membrane Science, 2019, 577, 137-144.	4.1	55
63	High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy and Environment, 2020, 5, 50-58.	4.7	55
64	Understanding Shuttling Effect in Sodium Ion Batteries for the Solution of Capacity Fading: FeS ₂ as an Example. Journal of Physical Chemistry C, 2019, 123, 2775-2782.	1.5	54
65	Bimetal Synergistic Effect Induced High Reversibility of Conversion-Type Ni@NiCo ₂ S ₄ as a Free-Standing Anode for Sodium Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 1435-1442.	2.1	54
66	In Situ Formation of Co ₉ S ₈ Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19218-19226.	4.0	51
67	Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, 584-591.	1.7	51
68	The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7. Journal of Autoimmunity, 2018, 90, 64-75.	3.0	50
69	Microstructureâ€Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. Small, 2021, 17, e2102248.	5.2	50
70	Dualâ€Functional NbN Ultrafine Nanocrystals Enabling Kinetically Boosted Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	49
71	Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries. Journal of Energy Chemistry, 2020, 50, 387-394.	7.1	47
72	From α-NaMnO ₂ to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. CrystEngComm, 2016, 18, 3136-3141.	1.3	46

#	Article	IF	CITATIONS
73	Donor-acceptor 2D covalent organic frameworks for efficient heterogeneous photocatalytic α-oxyamination. Science China Chemistry, 2021, 64, 827-833.	4.2	46
74	Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator., 2020, 2, 1691-1697.		42
7 5	Large-scale urchin-like micro/nano-structured NiS: controlled synthesis, cation exchange and lithium-ion battery applications. RSC Advances, 2013, 3, 17431.	1.7	41
76	Synergistic effect of Co3O4@C@MnO2 nanowire heterostructures for high-performance asymmetry supercapacitor with long cycle life. Electrochimica Acta, 2018, 283, 1087-1094.	2.6	41
77	Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N,S-co-doped carbon rolls. Nanoscale, 2020, 12, 8493-8501.	2.8	41
78	Sequential partial ion exchange synthesis of composite Ni ₃ S ₉ S ₉ NiSe nanoarrays with a lavender-like hierarchical morphology. Inorganic Chemistry Frontiers, 2017, 4, 727-735.	3.0	40
79	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 27833-27838.	4.0	40
80	Bromineâ€Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. Chemistry - A European Journal, 2020, 26, 5784-5788.	1.7	40
81	Ni ₁₂ P ₅ nanoparticles bound on graphene sheets for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 10760-10770.	2.8	40
82	A Hollow Tubeâ€onâ€Tube Architecture of Carbonâ€Tubeâ€Supported Nickel Cobalt Sulfide Nanotubes for Advanced Supercapacitors. ChemNanoMat, 2017, 3, 269-276.	1.5	39
83	One-Step Construction of MoS _{0.74} Se _{1.26} /N-Doped Carbon Flower-like Hierarchical Microspheres with Enhanced Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44342-44351.	4.0	39
84	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale, 2019, 11, 21999-22005.	2.8	39
85	Highly Electrochemicallyâ€Reversible Mesoporous Na ₂ FePO ₄ F/C as Cathode Material for Highâ€Performance Sodiumâ€lon Batteries. Small, 2019, 15, e1903723.	5.2	38
86	Se–C bond and reversible SEI in facile synthesized SnSe2âŠ,3D carbon induced stable anode for sodium-ion batteries. Electrochimica Acta, 2020, 337, 135783.	2.6	37
87	Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. Journal of Energy Chemistry, 2021, 57, 650-655.	7.1	37
88	A Water Stable, Nearâ€Zeroâ€Strain O3â€Layered Titaniumâ€Based Anode for Long Cycle Sodiumâ€Ion Battery. Advanced Functional Materials, 2020, 30, 1907023.	7.8	36
89	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	6.8	36
90	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. Communications Chemistry, 2020, 3, .	2.0	35

#	Article	IF	Citations
91	Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithiumâ€"sulfur batteries. Nano Research, 2022, 15, 1424-1432.	5.8	35
92	Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Reports Physical Science, 2022, 3, 100868.	2.8	35
93	2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2022, 15, .	3.6	35
94	Cation-exchange induced high power electrochemical properties of core–shell Ni(OH)2@CoOOH. Journal of Power Sources, 2011, 196, 488-494.	4.0	34
95	Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries. Nano Research, 2018, 11, 4038-4048.	5.8	34
96	Construction of 3D architectures with Ni(HCO ₃) ₂ nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chemical Science, 2018, 9, 8682-8691.	3.7	34
97	Amorphous NaVOPO ₄ as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. CCS Chemistry, 2021, 3, 2428-2436.	4.6	34
98	TiO ₂ â€Based Heterostructures with Different Mechanism: A General Synergistic Effect toward Highâ€Performance Sodium Storage. Small, 2020, 16, e2004054.	5.2	33
99	Controlled synthesis of spherical hierarchical LiNi1â^'xâ^'yCoxAlyO2 (0 <x, 190,="" 2016,="" 932-938.<="" a="" acta,="" as="" batteries.="" cathode="" cation="" electrochimica="" exchange="" for="" high-performance="" lithium="" materials="" novel="" process="" td="" via="" y<0.2)=""><td>2.6</td><td>32</td></x,>	2.6	32
100	In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Research, 2022, 15, 8972-8982.	5.8	31
101	Large-scale stereoscopic structured heazlewoodite microrod arrays and scale-like microsheets for lithium-ion battery applications. RSC Advances, 2012, 2, 6817.	1.7	29
102	Ag ⁺ insertion into 3D hierarchical rose-like Cu _{1.8} Se nanocrystals with tunable band gap and morphology genetic. Nanoscale, 2014, 6, 1124-1133.	2.8	28
103	Layer-by-Layer Stacked (NH ₄) ₂ V ₄ O ₉ ·0.5H ₂ O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage. ACS Applied Energy Materials. 2020. 3, 5343-5352.	2.5	28
104	Tunable Electrochemical Properties Brought About by Partial Cation Exchange in Hydrotalcite-Like Niâ^'Co/Coâ^'Ni Hydroxide Nanosheets. Journal of Physical Chemistry C, 2008, 112, 17471-17477.	1.5	27
105	Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries. RSC Advances, 2013, 3, 408-412.	1.7	27
106	Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries. Journal of Membrane Science, 2019, 583, 163-170.	4.1	27
107	A novel helical chain zinc(II) coordination polymer derived from both ferrocenecarboxylato and bibenzimidazolyl ligands: synthesis, crystal structure and properties. Journal of Molecular Structure, 2004, 694, 179-183.	1.8	26
108	Zeroâ€Strain Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dualâ€Confinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	10.2	26

#	Article	IF	CITATIONS
109	Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium–sulfur batteries. Electrochimica Acta, 2015, 178, 564-570.	2.6	25
110	One-pot synthesis and the electrochemical properties of nano-structured nickel selenide materials with hierarchical structure. CrystEngComm, 2013, 15, 2624.	1.3	24
111	Evidence of Rural and Suburban Sources of Urban Haze Formation in China: A Case Study From the Pearl River Delta Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4712-4726.	1.2	24
112	Interface Engineering Based on Multinanoscale Heterojunctions between NiO Quantum Dots, N-Doped Amorphous Carbon and Ni for Advanced Supercapacitor. ACS Applied Energy Materials, 2021, 4, 3221-3230.	2.5	24
113	Rationally Designed Threeâ€Layered TiO ₂ @amorphous MoS ₃ @Carbon Hierarchical Microspheres for Efficient Potassium Storage. Small, 2022, 18, e2107819.	5.2	24
114	Carbon coated ultrasmall anatase TiO 2 nanocrystal anchored on N,S-RGO as high-performance anode for sodium ion batteries. Green Energy and Environment, 2018, 3, 277-285.	4.7	23
115	Heterojunction \hat{l} ±-Co(OH)2/ \hat{l} ±-Ni(OH)2 nanorods arrays on Ni foam with high utilization rate and excellent structure stability for high-performance supercapacitor. Scientific Reports, 2019, 9, 12727.	1.6	23
116	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. Chemical Communications, 2020, 56, 6559-6562.	2.2	23
117	PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Science China Materials, 2021, 64, 105-114.	3 . 5	23
118	SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage. FlatChem, 2021, 28, 100259.	2.8	23
119	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	5. 2	23
120	Beneficial metal ion insertion into dandelion-like MnS with enhanced catalytic performance and genetic morphology. RSC Advances, 2014, 4, 19257-19265.	1.7	22
121	High-rate-capability asymmetric supercapacitor device based on lily-like Co ₃ O ₄ nanostructures assembled using nanowires. RSC Advances, 2017, 7, 3752-3759.	1.7	22
122	Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. Journal of Materials Chemistry A, 2020, 8, 22962-22968.	5.2	22
123	Bimetal CoNi Active Sites on Mesoporous Carbon Nanosheets to Kinetically Boost Lithiumâ^'Sulfur Batteries. Small, 2021, 17, e2100414.	5.2	22
124	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Research, 2022, 15, 6184-6191.	5.8	22
125	Advances of Carbon-Based Materials for Lithium Metal Anodes. Frontiers in Chemistry, 2020, 8, 595972.	1.8	21
126	Programmable Triboelectric Nanogenerators Dependent on the Secondary Building Units in Cadmium Coordination Polymers. Inorganic Chemistry, 2021, 60, 550-554.	1.9	21

#	Article	IF	CITATIONS
127	High-rate performance aqueous-based supercapacitors at \hat{a} 30 \hat{A} C driven by novel 1D Ni(OH) ₂ nanorods and a two-solute electrolyte. Journal of Materials Chemistry A, 2021, 9, 23860-23872.	5.2	21
128	Recent advances in "water in salt―electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+,) Tj ETQq0	0 9 0 rgB1	Oyerlock 10
129	Aluminum Insertionâ€Induced Enhanced Performance of Li(Ni _{0.83â€<i>x</i>} Co _{0.10} Mn _{0.07} Al _{<i>y</i>})O ₂ <td>>1.7</td> <td>19</td>	>1.7	19
130	Nonâ€Noble Metalâ€Based Catalysts Applied to Hydrogen Evolution from Hydrolysis of Boron Hydrides. Small Structures, 2021, 2, 2000135.	6.9	19
131	Progress in Gel Polymer Electrolytes for Sodium″on Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	19
132	Metallosalphen-Based 2D Covalent Organic Frameworks with an Unprecedented tju Topology via K-Shaped Two-in-One Monomers. Chemistry of Materials, 2022, 34, 5888-5895.	3.2	18
133	Synthesis of Li2FeSiO4/C and its excellent performance in aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10912.	5.2	17
134	Controlled synthesis of concentration gradient LiNi _{0.04} 0.020 _{1.90} F _{0.10} 0.100.100.10Al _{0.04} 0.020.051.901.901.901.900.10 with improved electrochemical properties in Li-ion batteries. RSC Advances, 2016, 6, 58173-58181.	04/ s ub>	17
135	Synergistic Effect Initiating Ni1-xCoxMoO4â [™] xH2O as Electrodes for High-Energy-Density Asymmetric Supercapacitors. Electrochimica Acta, 2017, 228, 274-281.	2.6	17
136	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 5423-5429.	1.6	17
137	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie, 2021, 133, 11582-11587.	1.6	17
138	An N-doped three dimensional flexible carbon/sulfur cathode for lithium sulfur battery design. Dalton Transactions, 2016, 45, 3305-3309.	1.6	16
139	Development of high-utilization honeycomb-like α-Ni(OH) < sub > 2 < /sub > for asymmetric supercapacitors with excellent capacitance. RSC Advances, 2018, 8, 37129-37135.	1.7	16
140	Construction of \hat{I}^3 -MnS/ \hat{I}_\pm -MnS hetero-phase junction for high-performance sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 135149.	6.6	16
141	Improving the Li–S battery performance by applying a combined interface engineering approach on the Li ₂ S cathode. Journal of Materials Chemistry A, 2019, 7, 27247-27255.	5.2	15
142	N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2020, 7, 3969-3979.	3.0	15
143	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. Journal of Energy Chemistry, 2021, 54, 564-570.	7.1	15
144	Effects of surface coating of Y(OH)3 on the electrochemical performance of spherical Ni(OH)2. Journal of Power Sources, 2007, 171, 981-989.	4.0	14

#	Article	IF	CITATIONS
145	Large-scale synthesis and catalysis properties of micro-structured snowflake Cu2S from a single source Cu(II) coordination complex. Materials Letters, 2011, 65, 1785-1787.	1.3	14
146	The Immunobiology of Receptor Activator for Nuclear Factor Kappa B Ligand and Myeloidâ€Derived Suppressor Cell Activation in Immunoglobulin G4–Related Sclerosing Cholangitis. Hepatology, 2018, 68, 1922-1936.	3.6	14
147	A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. ACS Applied Materials & Interfaces, 2019, 11, 45126-45132.	4.0	14
148	Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries. Journal of Solid State Electrochemistry, 2020, 24, 511-519.	1,2	14
149	3D Cu2â^'xSe nano/micropeony architectures: Large-scale solvothermal synthesis, characterization, and catalytic properties. Thin Solid Films, 2013, 534, 22-27.	0.8	13
150	Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. Journal of Environmental Sciences, 2016, 46, 72-82.	3.2	13
151	Hierarchical Porous Molybdenum Carbide Based Nanomaterials for Electrocatalytic Hydrogen Production. Frontiers in Chemistry, 2020, 8, 426.	1.8	13
152	Pre-sodiation strategy for superior sodium storage batteries. Chinese Journal of Chemical Engineering, 2021, 39, 261-268.	1.7	13
153	Designed synthesis of porous NiMoO ₄ /C composite nanorods for asymmetric supercapacitors. CrystEngComm, 2019, 21, 5492-5499.	1.3	12
154	Bi-component synergic effect in lily-like CdS/Cu ₇ S ₄ QDs for dye degradation. RSC Advances, 2019, 9, 2441-2450.	1.7	12
155	Recent advances of two–dimensional molybdenum disulfide based materials: Synthesis, modification and applications in energy conversion and storage. Sustainable Materials and Technologies, 2020, 24, e00161.	1.7	12
156	Dualâ€Functional MgO Nanocrystals Satisfying Both Polysulfides and Li Regulation toward Advanced Lithiumâ^'Sulfur Full Batteries. Small, 2021, 17, e2103744.	5.2	12
157	Understanding the Accelerated Sodium-Ion-Transport Mechanism of an Interfacial Modified Polyacrylonitrile Separator. Journal of Physical Chemistry C, 2022, 126, 8238-8247.	1.5	12
158	Composition control of electrodeposited nickel–cerium hydroxides by tuning the pH at the electrode/solution interface. Journal of Electroanalytical Chemistry, 2012, 670, 62-66.	1.9	11
159	Hetero-nuclear coordinated compounds for use in high-performance supercapacitor electrode material design. Inorganic Chemistry Frontiers, 2014, 1, 745-750.	3.0	11
160	Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS "Branch―with Tunable Catalysis Properties. Scientific Reports, 2016, 6, 30604.	1.6	11
161	Electrospun nitrogen-doped carbon nanofibers for electrocatalysis. Sustainable Materials and Technologies, 2020, 26, e00221.	1.7	11
162	Ultrathin 2D FexCo1-xSe2 nanosheets with enhanced sodium-ion storage performance induced by heteroatom doping effect. Electrochimica Acta, 2020, 353, 136563.	2.6	11

#	Article	IF	CITATIONS
163	Cotton Clothâ€Induced Flexible Hierarchical Carbon Film for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2136-2144.	1.7	11
164	Effects of Comonomers on the Performance of Stable Phosphonate-Based Gel Terpolymer Electrolytes for Sodium-Ion Batteries with Ultralong Cycling Stability. ACS Applied Materials & Interfaces, 2021, 13, 25024-25035.	4.0	11
165	An effective solid-electrolyte interphase for stable solid-state batteries. CheM, 2021, 7, 3195-3197.	5.8	11
166	Poly(ethylene oxide)-ethylene carbonate solid binary electrolyte with higher conductivity, lower operating temperature and fully impregnated separator for all solid-state lithium ion batteries. Composites Communications, 2022, 29, 101026.	3.3	10
167	Cobalt sandwich complex-based covalent organic frameworks for chemical fixation of CO2. Science China Materials, 2022, 65, 1377-1382.	3.5	10
168	Elastic porous carbon material supported sulfur cathodes for Li–S battery design. New Journal of Chemistry, 2016, 40, 93-96.	1.4	9
169	Recent advances on MXene based materials for energy storage applications. Materials Today Sustainability, 2022, 19, 100163.	1.9	9
170	Structural and catalytic properties of Cu ₂ S microrods grown on a threeâ€dimensional substrate. Crystal Research and Technology, 2012, 47, 87-90.	0.6	8
171	Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage. Journal of Materials Science, 2019, 54, 14825-14833.	1.7	8
172	Advances of electrospun Mo-based nanocomposite fibers as anode materials for supercapacitors. Sustainable Materials and Technologies, 2021, 29, e00302.	1.7	8
173	Self-assembly of a Sandwich-like Cadmium Ferrocenyl Coordination Polymer and its Third-Order Nonlinear Optical Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 725-728.	0.6	7
174	How to synthesize pure Li _{2\hat{a}"x} FeSi _{1\hat{a}"x} P _x O ₄ /C (x =) Tj ETQq Transactions, 2015, 44, 14805-14812.	q0 0 0 rgBT 1.6	Γ /Overlock 1 7
175	Oneâ€Step Transformation from Cu 2 S Nanocrystal to CuS Nanocrystal with Photocatalytic Properties. ChemistrySelect, 2019, 4, 7512-7522.	0.7	7
176	The polymerization capability of alkenyl phosphates and application as gel copolymer electrolytes for lithium ion batteries with high flame-retardancy. Reactive and Functional Polymers, 2020, 149, 104535.	2.0	7
177	Solvent Selective Polyacrylonitrile Fiber as a Recyclable Catalyst for the Knoevenagel-Michael Reaction in Water. Catalysis Letters, 0, , 1.	1.4	7
178	Fabrication of CuS@Ni ₃ S ₄ ―polyacrylonitrile textile fabric with enhanced reusability for the treatment of dyes wastewater. ChemistrySelect, 2016, 1, 3618-3622.	0.7	6
179	Large-scale Uniform 3D composite Fe ₃ O ₄ @CF for High-performance Supercapacitors Design. ChemistrySelect, 2016, 1, 2909-2915.	0.7	5
180	<i>In situ</i> sulfuration synthesis of flexible PAN-CuS "flowering branch―heterostructures as recyclable catalysts for dye degradation. RSC Advances, 2018, 8, 40589-40594.	1.7	5

#	Article	IF	Citations
181	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Electrolyte. Electrolyte. ACS Applied Materials & Electrolyte. Electrolyte	4.0	5
182	Influence of Surface Polarity on Catalytic Properties of Aminopyridine Functionalized Polyacrylonitrile Fiber Catalyst. Catalysis Letters, 2021, 151, 2056-2064.	1.4	5
183	An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Research, 2022, 15, 6138-6147.	5.8	5
184	Effects of Flexible Group Length of Phosphonate Monomers on the Performance of Gel Polymer Electrolytes for Sodium-lon Batteries with Ultralong Cycling Life. ACS Sustainable Chemistry and Engineering, 2022, 10, 7158-7168.	3.2	5
185	A Novel Twoâ€Dimensional Cadmium Polymeric Aminonaphthalene Sulfonate and its Application in the Synthesis of CdS Materials. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 373-376.	0.6	4
186	The design of CNTs@Ni _{$1/3$} Co _{$2/3$} (CO _{3}) _{$1/2$} (OH)·0.11H _{2} O <i>in situ</i> compounded in the nanoscale for all-solid-state supercapacitors. New Journal of Chemistry, 2020, 44, 1185-1189.	1.4	4
187	Simple Preparation of Baroque Mn-Based Chalcogenide/Honeycomb-like Carbon Composites for Sodium-Ion Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Energ	2.5	4
188	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie, 0, , .	1.6	4
189	Quantitative study of pH change during LaNi5â^'xAlx (x=0, 0.3) discharge process by SECM. Electrochimica Acta, 2007, 52, 4231-4238.	2.6	3
190	Response of Two-Dimensional Polymeric Cadmium Ferrocenyl Disulfonates to Heavy Metal Ions. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 847-855.	1.9	2
191	Use of Cadmium Inclusion Complex for the Preparation of Crystalline CdS Materials. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 673-676.	0.6	1
192	Component-controllable (Ni, Co)Se2(1â^'x)S2x (0 ≤ ≤) acanthospheres for high-performance binder-free supercapacitors. Materials Letters, 2017, 196, 304-307.	1.3	1
193	Synthesis and crystal strcucture of two zinc inclusion complexes. Crystal Research and Technology, 2008, 43, 882-887.	0.6	0
194	Construction of Highâ€Nuclear Cu x S y Nanocrystalline Catalyst from Highâ€Nuclear Copper Cluster. ChemistrySelect, 2019, 4, 3459-3464.	0.7	0
195	Editorial: Advanced Carbon Chemistry for Rechargeable Batteries. Frontiers in Chemistry, 2020, 8, 667.	1.8	0
196	Frontispiece: Organosulfonate Counteranionsâ€"A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, .	1.7	0
197	Tetrakaidecahedron-shaped Cu four-core supramolecular as novel high-performance electrode material for lithium-ion batteries. Chemical Communications, 2022, , .	2.2	0