
Cuicui Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	7.1	839
2	Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications, 2018, 9, 129.	12.8	414
3	Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for <i>In Vivo</i> Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano, 2015, 9, 12451-12463.	14.6	388
4	Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating. ACS Nano, 2015, 9, 5713-5724.	14.6	271
5	Facet Energy <i>versus</i> Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano, 2016, 10, 10436-10445.	14.6	247
6	Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Interfaces, 2015, 7, 20568-20575.	8.0	243
7	Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials, 2014, 35, 4656-4666.	11.4	210
8	Synthesis of Pt Hollow Nanodendrites with Enhanced Peroxidase‣ike Activity against Bacterial Infections: Implication for Wound Healing. Advanced Functional Materials, 2018, 28, 1801484.	14.9	205
9	Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano, 2016, 10, 8690-8699.	14.6	188
10	Poly(Vinylpyrollidone)―and Selenocysteineâ€Modified Bi ₂ Se ₃ Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced Materials, 2017, 29, 1701268.	21.0	171
11	Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 8443-8450.	8.0	165
12	Advances in oxidase-mimicking nanozymes: Classification, activity regulation and biomedical applications. Nano Today, 2021, 37, 101076.	11.9	150
13	Towards understanding of nanoparticle–protein corona. Archives of Toxicology, 2015, 89, 519-539.	4.2	135
14	Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer. Environmental Science & Technology, 2017, 51, 10154-10161.	10.0	131
15	Quantitative Analysis of Metal Impurities in Carbon Nanotubes: Efficacy of Different Pretreatment Protocols for ICPMS Spectroscopy. Analytical Chemistry, 2008, 80, 9426-9434.	6.5	125
16	The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials, 2012, 4, e32-e32.	7.9	112
17	Highly Efficient Hierarchical Micelles Integrating Photothermal Therapy and Singlet Oxygen-Synergized Chemotherapy for Cancer Eradication. Theranostics, 2014, 4, 399-411.	10.0	103
18	Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials. Scientific Reports, 2015, 5, 10886.	3.3	97

Cuicui Ge

19Photogenerated Charge Carriers in Molybdenum Disulfide Quantum Dots with Enhanced Antibacterial8.020Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer12.821Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment.10.022Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology, 2012, 6, 526-542.3.023Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small, 2017, 13, 1602133.10.024Optimization of Antibacterial Efficacy of Noble-Metal-Based Corea&GShell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702.14.625Understanding the Nanoa&GB is out by 2x/sub>Skipb Skipb Skip	97 84 73 72
20 treatment. Nature Communications, 2018, 9, 4861. 12.8 21 Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment. Theranostics, 2017, 7, 4087-4098. 10.0 22 Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology, 2012, 6, 526-542. 3.0 23 Craphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small, 2017, 13, 1602133. 10.0 24 Optimization of Antibacterial Efficacy of Noble-Metal-Based Coreá€"Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702. 14.6 25 Understanding the Nanoá€"Bio Interactions and the Corresponding Biological Responses. Frontiers in 3.6 3.6 26 Fabrication of PECylated Fe@Bi ₂ S ₃ nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. 5.4 27 Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. Carbon, 2017, 121, 285-291. 10.3 28 Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. 14.6	73
21 Theranostics, 2017, 7, 4087-4098. 10.0 22 Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology, 2012, 6, 526-542. 3.0 23 Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small, 2017, 13, 1602133. 10.0 24 Optimization of Antibacterial Efficacy of Noble-Metal-Based Core–Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702. 14.6 25 Understanding the Nano–Bio Interactions and the Corresponding Biological Responses. Frontiers in Chemistry, 2020, 8, 446. 3.6 26 Fabrication of PECylated Fe@Bissub>233anocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. 10.3 27 Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. Carbon, 2017, 121, 285-291. 10.3 28 Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. 14.6	
22 exposure to single-wall carbon nanotubes. Nanotoxicology, 2012, 6, 526-542. 3.0 23 Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small, 2017, 13, 1602133. 10.0 24 Optimization of Antibacterial Efficacy of Noble-Metal-Based Coreâ€"Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702. 14.6 25 Understanding the Nanoâ€"Bio Interactions and the Corresponding Biological Responses. Frontiers in Chemistry, 2020, 8, 446. 3.6 26 Fabrication of PEGylated Fe@Bi ₂ S ₃ nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. 5.4 27 Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. 10.3 28 Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. 14.6 29 Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. 3.6	72
23 2017, 13, 1602133. 10.0 24 Optimization of Antibacterial Efficacy of Noble-Metal-Based Coreâ€"Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702. 14.6 25 Understanding the Nanoâ€"Bio Interactions and the Corresponding Biological Responses. Frontiers in Chemistry, 2020, 8, 446. 3.6 26 Fabrication of PECylated Fe@Bi ₂ S ₃ nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. 5.4 27 Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. 10.3 28 Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. 14.6	
24 Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702. 14.6 25 Understanding the NanoâC"Bio Interactions and the Corresponding Biological Responses. Frontiers in Chemistry, 2020, 8, 446. 3.6 26 Fabrication of PEGylated Fe@Bi ₂ S ₃ nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. 5.4 27 Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. Carbon, 2017, 121, 285-291. 10.3 28 Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. 14.6	68
25 Chemistry, 2020, 8, 446. 3.6 26 Fabrication of PEGylated Fe@Bi ₂ S ₃ nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. 5.4 27 Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. 10.3 28 Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. 14.6 29 Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. 20.0	61
 and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898. Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. Carbon, 2017, 121, 285-291. Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. 	38
 Carbon, 2017, 121, 285-291. Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104. Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. 	34
of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104.	17
 Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. Nanotoxicology, 2018, 12, 185-200. 	16
	14
Lanosterol Disrupts the Aggregation of Amyloid- \hat{l}^2 Peptides. ACS Chemical Neuroscience, 2019, 10, 4051-4060. 3.5	14
Facet-regulated adhesion of double-stranded DNA on palladium surfaces. Nanoscale, 2019, 11, 1827-1836. 5.6	11
Emerging nanozymes for potentiating radiotherapy and radiation protection. Chinese Chemical 9.0 Letters, 2022, 33, 3315-3324.	10
83 Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. 83 Nanomedicine, 2018, 13, 733-747. 8.3	9
 Pharmacological Ascorbate Promotes the Tumor Radiosensitization of Au@Pd Nanoparticles with Simultaneous Protection of Normal Tissues. ACS Applied Bio Materials, 2021, 4, 1843-1851. 	8
Rational design of metal-based antimicrobial nanomaterials in environmental applications. 4.3 Environmental Science: Nano, 2021, 8, 3478-3492.	5