Arnaud Leclerc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657024/publications.pdf

Version: 2024-02-01

13 papers	145 citations	6 h-index	1281871 11 g-index
13	13	13	131
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices. Journal of Chemical Physics, 2014, 140, 174111.	3.0	70
2	Using symmetry-adapted optimized sum-of-products basis functions to calculate vibrational spectra. Chemical Physics Letters, 2016, 644, 183-188.	2.6	18
3	Exotic states in the strong-field control of ${{m{H}}}_{2}^{+}$ dissociation dynamics: from exceptional points to zero-width resonances. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 234002.	1.5	15
4	Comparison of different eigensolvers for calculating vibrational spectra using low-rank, sum-of-product basis functions. Molecular Physics, 2017, 115, 1740-1749.	1.7	10
5	Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach. Physical Review A, 2016, 94, .	2.5	9
6	Fitting continuum wavefunctions with complex Gaussians: Computation of ionization cross sections. Journal of Computational Chemistry, 2020, 41, 2365-2377.	3.3	6
7	Development of a general time-dependent absorbing potential for the constrained adiabatic trajectory method. Journal of Chemical Physics, 2011, 134, 194111.	3.0	5
8	Consistency between adiabatic and non-adiabatic geometric phases for non-self-adjoint Hamiltonians. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 335301.	2.1	4
9	Global integration of the Schrödinger equation: a short iterative scheme within the wave operator formalism using discrete Fourier transforms. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 225205.	2.1	3
10	Global integration of the Schrödinger equation within the wave operator formalism: the role of the effective Hamiltonian in multidimensional active spaces. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 195305.	2.1	3
11	A complex Gaussian approach to molecular photoionization. Journal of Computational Chemistry, 2021, 42, 2294-2305.	3.3	2
12	Calculating eigenvalues and eigenvectors of parameter-dependent Hamiltonians using an adaptative wave operator method. Journal of Chemical Physics, 2020, 152, 204107.	3.0	0
13	Multicenter integrals involving complex Gaussian-type functions. Advances in Quantum Chemistry, 2021, , 287-304.	0.8	0