
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/265695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial production of vitamin B12: a review and future perspectives. Microbial Cell Factories, 2017, 16, 15.	4.0	260
2	Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories, 2020, 19, 173.	4.0	194
3	Current development in genetic engineering strategies of Bacillus species. Microbial Cell Factories, 2014, 13, 63.	4.0	103
4	Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nature Communications, 2018, 9, 4917.	12.8	99
5	Application of different types of CRISPR/Cas-based systems in bacteria. Microbial Cell Factories, 2020, 19, 172.	4.0	87
6	Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis. Journal of Microbiology and Biotechnology, 2015, 25, 963-977.	2.1	79
7	Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microbial Cell Factories, 2015, 14, 92.	4.0	72
8	Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnology Letters, 2015, 37, 899-906.	2.2	68
9	Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 837-848.	3.8	64
10	Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications. PLoS ONE, 2016, 11, e0158447.	2.5	62
11	A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis. Microbial Cell Factories, 2016, 15, 69.	4.0	57
12	Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14, 121.	4.0	55
13	Systematic Screening of Optimal Signal Peptides for Secretory Production of Heterologous Proteins in <i>Bacillus subtilis</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13141-13151.	5.2	54
14	High-Efficiency Secretion of β-Mannanase in <i>Bacillus subtilis</i> through Protein Synthesis and Secretion Optimization. Journal of Agricultural and Food Chemistry, 2017, 65, 2540-2548.	5.2	53
15	Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 2018, 18, 5.	3.3	49
16	Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro. Scientific Reports, 2016, 6, 32208.	3.3	41
17	Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget, 2018, 9, 24320-24334.	1.8	41
18	High-level intra- and extra-cellular production of <scp>d</scp> -psicose 3-epimerase via a modified xylose-inducible expression system in <i>Bacillus subtilis</i> . Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1577-1591.	3.0	33

#	Article	IF	CITATIONS
19	Translation Elongation Regulates Substrate Selection by the Signal Recognition Particle. Journal of Biological Chemistry, 2012, 287, 7652-7660.	3.4	32
20	Tet1 facilitates hypoxia tolerance by stabilizing the HIF-α proteins independent of its methylcytosine dioxygenase activity. Nucleic Acids Research, 2017, 45, 12700-12714.	14.5	32
21	Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti. BMC Biotechnology, 2018, 18, 27.	3.3	31
22	Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microbial Cell Factories, 2015, 14, 86.	4.0	30
23	Rational design and analysis of an <i>Escherichia coli</i> strain for high-efficiency tryptophan production. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 357-367.	3.0	30
24	A pathogen-derived effector modulates host glucose metabolism by arginine GlcNAcylation of HIF-1α protein. PLoS Pathogens, 2018, 14, e1007259.	4.7	29
25	Principle and potential applications of the non-classical protein secretory pathway in bacteria. Applied Microbiology and Biotechnology, 2020, 104, 953-965.	3.6	29
26	Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synthetic and Systems Biotechnology, 2020, 5, 245-251.	3.7	29
27	An operator-based expression toolkit for <i>Bacillus subtilis</i> enables fine-tuning of gene expression and biosynthetic pathway regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119980119.	7.1	29
28	Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Scientific Reports, 2017, 7, 44023.	3.3	26
29	Zebrafish prmt5 arginine methyltransferase is essential for germ cell development. Development (Cambridge), 2019, 146, .	2.5	24
30	Microbial Cell Factories for Green Production of Vitamins. Frontiers in Bioengineering and Biotechnology, 2021, 9, 661562.	4.1	24
31	Establishment of a Biosensor-based High-Throughput Screening Platform for Tryptophan Overproduction. ACS Synthetic Biology, 2021, 10, 1373-1383.	3.8	23
32	Biosynthesis and applications of curdlan. Carbohydrate Polymers, 2021, 273, 118597.	10.2	22
33	Expanding application of CRISPR-Cas9 system in microorganisms. Synthetic and Systems Biotechnology, 2020, 5, 269-276.	3.7	21
34	New aspects of microbial vitamin K2 production by expanding the product spectrum. Microbial Cell Factories, 2021, 20, 84.	4.0	21
35	Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synthetic and Systems Biotechnology, 2022, 7, 544-553.	3.7	21
36	Metabolic engineering of <i>Escherichia coli</i> for production of chemicals derived from the shikimate pathway. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 525-535.	3.0	19

#	Article	IF	CITATIONS
37	Novel Proteomic Tools Reveal Essential Roles of SRP and Importance of Proper Membrane Protein Biogenesis. Molecular and Cellular Proteomics, 2012, 11, M111.011585.	3.8	18
38	Cloning, Characterization, and Production of a Novel Lysozyme by Different Expression Hosts. Journal of Microbiology and Biotechnology, 2014, 24, 1405-1412.	2.1	18
39	A newly isolated and identified vitamin B12 producing strain: Sinorhizobium meliloti 320. Bioprocess and Biosystems Engineering, 2016, 39, 1527-1537.	3.4	17
40	High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Microbial Cell Factories, 2019, 18, 17.	4.0	17
41	Engineering Escherichia coli to improve tryptophan production via genetic manipulation of precursor and cofactor pathways. Synthetic and Systems Biotechnology, 2020, 5, 200-205.	3.7	17
42	Zebrafish NF-κB/p65 Is Required for Antiviral Responses. Journal of Immunology, 2020, 204, 3019-3029.	0.8	17
43	A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnology Letters, 2017, 39, 1237-1244.	2.2	16
44	Property Improvement of $\hat{I}\pm$ -Amylase from Bacillus stearothermophilus by Deletion of Amino Acid Residues Arginine 179-Glycine 180. Food Technology and Biotechnology, 2018, 56, 58-64.	2.1	16
45	Two classes of cytochrome P450 reductase genes and their divergent functions in Camptotheca acuminata Decne. International Journal of Biological Macromolecules, 2019, 138, 1098-1108.	7.5	16
46	The Versatile Type V CRISPR Effectors and Their Application Prospects. Frontiers in Cell and Developmental Biology, 2020, 8, 622103.	3.7	16
47	A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker. Bioresources and Bioprocessing, 2017, 4, 9.	4.2	15
48	Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. Journal of Microbiology and Biotechnology, 2019, 29, 923-932.	2.1	14
49	In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology. PLoS ONE, 2016, 11, e0151149.	2.5	12
50	A fast and sensitive coupled enzyme assay for the measurement of l-threonine and application to high-throughput screening of threonine-overproducing strains. Enzyme and Microbial Technology, 2014, 67, 1-7.	3.2	11
51	Zebrafish <i>hif-3α</i> modulates erythropoiesis via regulation of <i>gata-1</i> to facilitate hypoxia tolerance. Development (Cambridge), 2020, 147, .	2.5	11
52	TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. Journal of Biological Chemistry, 2020, 295, 16299-16313.	3.4	11
53	A multistrategy approach for improving the expression of <i>E. coli</i> phytase in <i>Pichia pastoris</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 1161-1172.	3.0	10
54	Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli. Bioprocess and Biosystems Engineering, 2020, 43, 1735-1745.	3.4	10

#	Article	IF	CITATIONS
55	High-Efficiency Secretion and Directed Evolution of Chitinase BcChiA1 in Bacillus subtilis for the Conversion of Chitinaceous Wastes Into Chitooligosaccharides. Frontiers in Bioengineering and Biotechnology, 2020, 8, 432.	4.1	10
56	An Enzymatic Assay for High-Throughput Screening of Cytidine-Producing Microbial Strains. PLoS ONE, 2015, 10, e0121612.	2.5	9
57	Manipulation of Purine Metabolic Networks for Riboflavin Production in <i>Bacillus subtilis</i> . ACS Omega, 2020, 5, 29140-29146.	3.5	9
58	Biosensor-based monitoring of the central metabolic pathway metabolites. Biosensors and Bioelectronics, 2020, 167, 112456.	10.1	9
59	CRISPR/Cas Technologies and Their Applications in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 762676.	4.1	9
60	Application of Biotechnology in Specific Spoilage Organisms of Aquatic Products. Frontiers in Bioengineering and Biotechnology, 2022, 10, 895283.	4.1	9
61	Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. ACS Synthetic Biology, 2019, 8, 2194-2202.	3.8	8
62	Enhanced production of <scp>d</scp> â€psicose 3â€epimerase in <i>Bacillus subtilis</i> by regulation of segmented fermentation. Biotechnology and Applied Biochemistry, 2020, 67, 812-818.	3.1	7
63	Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies. Microbial Cell Factories, 2020, 19, 118.	4.0	7
64	Improving the Production of Riboflavin by Introducing a Mutant Ribulose 5-Phosphate 3-Epimerase Gene in Bacillus subtilis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704650.	4.1	7
65	Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters. Journal of Microbiology and Biotechnology, 2019, 29, 419-428.	2.1	7
66	Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli. Bioprocess and Biosystems Engineering, 2021, 44, 1685-1697.	3.4	6
67	Metabolic profiling analysis of the vitamin B ₁₂ producer <i>Propionibacterium freudenreichii</i> . MicrobiologyOpen, 2021, 10, e1199.	3.0	6
68	Assessment of Spoilage Microbiota of Rainbow Trout (Oncorhynchus mykiss) during Storage by 16S rDNA Sequencing. Journal of Food Quality, 2022, 2022, 1-10.	2.6	6
69	ldentification of a new gene yecC involved in threonine export in Escherichia coli. FEMS Microbiology Letters, 2017, 364, .	1.8	5
70	Zebrafish Nedd8 facilitates ovarian development and the maintenance of female secondary sexual characteristics via suppression of androgen receptor activity. Development (Cambridge), 2020, 147, .	2.5	5
71	Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of <i>Agrobacterium radiobacter</i> Phosphotriesterase. ChemBioChem, 2021, 22, 2535-2539.	2.6	5
72	Signal Recognition Particle Suppressor Screening Reveals the Regulation of Membrane Protein Targeting by the Translation Rate. MBio, 2021, 12, .	4.1	5

#	Article	IF	CITATIONS
73	Hyper-secretion mechanism exploration of a heterologous creatinase in Bacillus subtilis. Biochemical Engineering Journal, 2020, 153, 107419.	3.6	4
74	Compensating Complete Loss of Signal Recognition Particle During Co-translational Protein Targeting by the Translation Speed and Accuracy. Frontiers in Microbiology, 2021, 12, 690286.	3.5	3
75	Identification of a xyloseâ€inducible promoter and its application for improving vitamin B ₁₂ production in <i>Sinorhizobium meliloti</i> . Biotechnology and Applied Biochemistry, 2021, 68, 856-864.	3.1	1
76	Somatic Embryogenesis and Indirect In Vitro Plant Regeneration in Amorphophallus konjac K. Koch by One-Step Seedling Formation. Horticulturae, 2021, 7, 497.	2.8	1
77	Pinpointing the l-phenylalanine binding sites of TyrR using biosensors and computer-aided simulation. Biotechnology Letters, 2019, 41, 401-408.	2.2	0