Janusz A Kozinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2656893/publications.pdf

Version: 2024-02-01

66315 91828 5,855 72 42 69 citations h-index g-index papers 72 72 72 4853 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catalytic hydrothermal co-gasification of canola meal and low-density polyethylene using mixed metal oxides for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 42084-42098.	3.8	18
2	Hydrothermal flames for subaquatic, terrestrial and extraterrestrial applications. Journal of Hazardous Materials, 2022, 424, 127520.	6.5	9
3	Hydrothermal processing of waste pine wood into industrially useful products. Journal of the Indian Chemical Society, 2022, 99, 100647.	1.3	2
4	Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 2021, 12, 2145-2169.	1.8	166
5	Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chemistry, 2021, 23, 2595-2618.	4.6	60
6	Catalytic and Noncatalytic Upgrading of Bio-Oil to Synthetic Fuels: An Introductory Review. ACS Symposium Series, 2021, , 1-28.	0.5	6
7	Nextâ€generation biofuels and platform biochemicals from lignocellulosic biomass. International Journal of Energy Research, 2021, 45, 14145-14169.	2.2	79
8	Catalytic Supercritical Water Gasification of Soybean Straw: Effects of Catalyst Supports and Promoters. Industrial & Engineering Chemistry Research, 2021, 60, 5770-5782.	1.8	31
9	Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresource Technology, 2021, 331, 125005.	4.8	52
10	Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review. Journal of Supercritical Fluids, 2021, 173, 105199.	1.6	60
11	Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design. Environmental Pollution, 2021, 283, 117040.	3.7	15
12	Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. International Journal of Hydrogen Energy, 2020, 45, 18275-18288.	3.8	70
13	A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renewable and Sustainable Energy Reviews, 2020, 119, 109546.	8.2	184
14	Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energy Conversion and Management, 2020, 208, 112545.	4.4	92
15	A Spotlight on Butanol and Propanol as Next-Generation Synthetic Fuels. , 2020, , 105-126.		7
16	Eco-friendly Transformation of Waste Biomass to Biofuels. Current Biochemical Engineering, 2020, 6, 120-134.	1.3	25
17	Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water. Journal of Energy Chemistry, 2019, 31, 107-118.	7.1	43
18	Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production. Journal of Supercritical Fluids, 2019, 154, 104627.	1.6	41

#	Article	IF	CITATIONS
19	Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustainable Energy and Fuels, 2019, 3, 578-598.	2.5	210
20	Impacts of oxidant characteristics on the ignition of n-propanol-air hydrothermal flames in supercritical water. Combustion and Flame, 2019, 203, 46-55.	2.8	23
21	Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. Journal of Environmental Chemical Engineering, 2018, 6, 182-189.	3.3	50
22	Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Science and Engineering, 2018, 6, 448-459.	1.9	69
23	CHAPTER 19. Hydrothermal Events Occurring During Gasification in Supercritical Water. RSC Green Chemistry, 2018, , 560-587.	0.0	3
24	An appraisal on biochar functionality and utility in agronomy. , 2018, , 389-410.		5
25	Fermentative production of butanol: Perspectives on synthetic biology. New Biotechnology, 2017, 37, 210-221.	2.4	107
26	PDMS/camphor soot composite coating: towards a self-healing and a self-cleaning superhydrophobic surface. RSC Advances, 2017, 7, 15027-15040.	1.7	43
27	Lewis acid catalyzed gasification of humic acid in supercritical water. Catalysis Today, 2017, 291, 13-23.	2.2	47
28	Insights on pathways for hydrogen generation from ethanol. Sustainable Energy and Fuels, 2017, 1, 1232-1245.	2.5	120
29	Fabrication of Highly Porous Nonspherical Particles Using Stop-Flow Lithography and the Study of Their Optical Properties. Langmuir, 2017, 33, 184-190.	1.6	10
30	An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Processing Technology, 2017, 168, 84-96.	3.7	87
31	Development of Dual-Phobic Surfaces: Superamphiphobicity in Air and Oleophobicity Underwater. ACS Sustainable Chemistry and Engineering, 2017, 5, 6716-6726.	3.2	21
32	Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. Journal of Supercritical Fluids, 2017, 119, 130-138.	1.6	77
33	Butanol from Renewable Biomass: Highlights of Downstream Processing and Recovery Techniques. , 2017, , 187-211.		6
34	Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass and Bioenergy, 2016, 91, 56-68.	2.9	58
35	Valorization of horse manure through catalytic supercritical water gasification. Waste Management, 2016, 52, 147-158.	3.7	104
36	Supercritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery. Chemical Engineering Research and Design, 2016, 113, 17-27.	2.7	64

3

#	Article	IF	Citations
37	The progressive routes for carbon capture and sequestration. Energy Science and Engineering, 2016, 4, 99-122.	1.9	136
38	Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion. Scientific Reports, 2016, 6, 30463.	1.6	42
39	Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass and Bioenergy, 2016, 95, 378-387.	2.9	86
40	Subcritical and supercritical water gasification of lignocellulosic biomass impregnated with nickel nanocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 4907-4921.	3.8	107
41	Gasification of fruit wastes and agro-food residues in supercritical water. Energy Conversion and Management, 2016, 110, 296-306.	4.4	190
42	Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste and Biomass Valorization, 2016, 7, 201-235.	1.8	272
43	Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products. Current Biochemical Engineering, 2015, 3, 24-36.	1.3	53
44	Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. Journal of Supercritical Fluids, 2015, 104, 112-121.	1.6	87
45	Ignition of hydrothermal flames. RSC Advances, 2015, 5, 36404-36422.	1.7	42
46	A microfluidic approach for the synthesis and assembly of multi-scale porous membranes. RSC Advances, 2015, 5, 100024-100029.	1.7	9
47	An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, 2015, 50, 925-941.	8.2	223
48	MODELING MECHANICAL CELL DAMAGE IN THE BIOPRINTING PROCESS EMPLOYING A CONICAL NEEDLE. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550073.	0.3	29
49	In situ synchrotronâ€based Xâ€ray powder diffraction and microâ€Raman study of biomass and residue model compounds at hydrothermal conditions. Energy Science and Engineering, 2015, 3, 189-195.	1.9	3
50	An Innovative Fuzzy-Neural Decision Analyzer for Qualitative Group Decision Making. International Journal of Information Technology and Decision Making, 2015, 14, 659-696.	2.3	5
51	Supercritical Water Gasification of Lactose as a Model Compound for Valorization of Dairy Industry Effluents. Industrial & Effluents.	1.8	63
52	Physico-Chemical Evolution in Lignocellulosic Feedstocks During Hydrothermal Pretreatment and Delignification. Journal of Biobased Materials and Bioenergy, 2015, 9, 295-308.	0.1	25
53	Physico-Chemical Properties of Bio-Oils from Pyrolysis of Lignocellulosic Biomass with High and Slow Heating Rate. Energy and Environment Research, 2014, 4, .	0.1	76
54	Supercritical water gasification of biomass in diamond anvil cells and fluidized beds. Biofuels, Bioproducts and Biorefining, 2014, 8, 728-737.	1.9	35

#	Article	IF	CITATIONS
55	Characteristic Studies on the Pyrolysis Products from Hydrolyzed Canadian Lignocellulosic Feedstocks. Bioenergy Research, 2014, 7, 174-191.	2.2	64
56	Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 6912-6926.	3.8	399
57	Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 2014, 4, 157-191.	2.9	290
58	Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Science and Engineering, 2014, 2, 138-148.	1.9	94
59	Catalytic gasification of glucose to H2 in supercritical water. Fuel Processing Technology, 2014, 127, 33-40.	3.7	55
60	Gasification of Canola Meal and Factors Affecting Gasification Process. Bioenergy Research, 2014, 7, 1131-1143.	2.2	16
61	Catalytic gasification of cellulose and pinewood to H2 in supercritical water. Fuel, 2014, 118, 416-425.	3.4	67
62	Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel, 2014, 125, 90-100.	3.4	266
63	Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 2013, 6, 663-677.	2.2	295
64	Esterification of Levulinic Acid to n-Butyl Levulinate Over Various Acidic Zeolites. Catalysis Letters, 2013, 143, 1220-1225.	1.4	99
65	Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. Journal of Analytical and Applied Pyrolysis, 2013, 104, 485-493.	2.6	212
66	Biosorption of Lead Ions from Aqueous Solution Using <i>Ficus benghalensis </i> L Journal of Engineering (United States), 2013, 2013, 1-8.	0.5	13
67	Novel Ni-Co-Mo-K Catalysts Supported on Multiwalled Carbon Nanotubes for Higher Alcohols Synthesis. Journal of Catalysts, 2013, 2013, 1-7.	0.5	2
68	Excluded-Mean-Variance Neural Decision Analyzer for Qualitative Group Decision Making. Advances in Fuzzy Systems, 2012, 2012, 1-10.	0.6	1
69	Contaminant source identification within a building: Toward design of immune buildings. Building and Environment, 2012, 51, 320-329.	3.0	50
70	Biomass, availability in Canada, and gasification: an overview. Biomass Conversion and Biorefinery, 2012, 2, 73-85.	2.9	28
71	Deactivation Studies of Alkali-Promoted Trimetallic Coâ^'Rhâ^'Mo Sulfide Catalysts for Higher Alcohols Synthesis from Synthesis Gas. Energy & Synthesis from Synthesis Gas. Energy & Synthesis Gas. En	2.5	24
72	Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology, 2008, 99, 3424-3430.	4.8	333