Cheng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2656698/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution. Science of the Total Environment, 2022, 802, 149752.	8.0	21
2	Enhanced luminescence properties of Li2MgTiO4: Mn4+, Ge4+ phosphor via single cation substitution for indoor plant cultivation. Ceramics International, 2022, 48, 3070-3080.	4.8	18
3	Novel ultra-high-temperature zero-thermal quenching plant-protecting type blue-green dual-emission KAl ₁₁ O ₁₇ :Eu ²⁺ ,Mn ²⁺ phosphors for urban ecological lighting. Journal of Materials Chemistry C, 2022, 10, 3461-3471.	5.5	19
4	Metal-containing organic compounds for memory and data storage applications. Chemical Society Reviews, 2022, 51, 1926-1982.	38.1	59
5	Novel Far-red Phosphors (La,Gd,Y) ₂ MgTiO ₆ â^¶Cr ³⁺ with Tunable Luminescence Spectra for Grow Light. Chinese Journal of Luminescence, 2022, 43, 58-68.	0.5	7
6	Catalytic co-pyrolysis of herb residue and polypropylene for pyrolysis products upgrading and diversification using nickel-X/biochar and ZSM-5 (XÂ=Âiron, cobalt, copper). Bioresource Technology, 2022, 349, 126845.	9.6	27
7	Anti-thermal-quenching, color-tunable and ultra-narrow-band cyan green-emitting phosphor for w-LEDs with enhanced color rendering. Chemical Engineering Journal, 2022, 433, 134079.	12.7	32
8	A high thermal stability Cr ³⁺ -doped gallate far red phosphor for plant lighting: structure, luminescence enhancement and application prospect. Journal of Materials Chemistry C, 2022, 10, 5829-5839.	5.5	23
9	Manganese Ionâ€5ensitized Nearâ€Infrared Light in Cs ₂ NaBi _{1â^} <i>_x</i> Er _{<i>x</i>} Cl ₆ Leadâ€Free Double Perovskite. Advanced Optical Materials, 2022, 10, .	7.3	16
10	Pyrolysis gas from biomass and plastics over X-Mo@MgO (X = Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms. Science of the Total Environment, 2022, 831, 154751.	8.0	17
11	A simple and generic post-treatment strategy for highly efficient Cr ³⁺ -activated broadband NIR emitting phosphors for high-power NIR light sources. Journal of Materials Chemistry C, 2022, 10, 8797-8805.	5.5	25
12	Multiple Strategies to Approach High-Efficiency Luminescence Controllable in Blue/Cyan/Green-Emitting Bi ³⁺ -Activated Phosphors. Journal of Physical Chemistry C, 2022, 126, 9195-9206.	3.1	16
13	Catalytic Activity and Reusability of Nickel-Based Catalysts with Different Biochar Supports during Copyrolysis of Biomass and Plastic. ACS Sustainable Chemistry and Engineering, 2022, 10, 9933-9945.	6.7	4
14	Study on the difference between in-situ and ex-situ catalytic pyrolysis of oily sludge. Environmental Science and Pollution Research, 2021, 28, 50500-50509.	5.3	5
15	Enhanced luminescence and energy transfer performance of double perovskite structure Gd2MgTiO6:Bi3+, Mn4+ phosphor for indoor plant growth LED lighting. Ceramics International, 2021, 47, 16588-16596.	4.8	51
16	The mechanism transformation of ramie biochar's cadmium adsorption by aging. Bioresource Technology, 2021, 330, 124947.	9.6	35
17	Tuning the luminescence properties of blue and farâ€red dual emitting Gd ₂ MgTiO ₆ : Bi ³⁺ , Cr ³⁺ phosphor for LED plant lamp. Journal of the American Ceramic Society, 2021, 104, 6444-6454.	3.8	17
18	An Efficient Hole Transporting Polymer for Quantum Dot Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100731.	3.7	16

CHENG ZHOU

#	Article	IF	CITATIONS
19	Bi3+ occupancy rearrangement in K2-xAxMgGeO4 phosphor to achieve ultra-broad-band white emission based on alkali metal substitution engineering. Applied Surface Science, 2021, 563, 150252.	6.1	24
20	Torrefied herb residues in nitrogen, air and oxygen atmosphere: Thermal decomposition behavior and pyrolytic products characters. Bioresource Technology, 2021, 342, 125991.	9.6	9
21	Interconnected structure Si@TiO2-B/CNTs composite anode applied for high-energy lithium-ion batteries. Applied Surface Science, 2020, 500, 144026.	6.1	33
22	High thermal stability and blue-violet emitting phosphor CaYAlO4:Ti4+ with enhanced emission by Ca2+ vacancies. Journal of Rare Earths, 2020, 38, 227-233.	4.8	11
23	Engineering cation vacancies to improve the luminescence properties of Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ : Mn ⁴⁺ phosphors for LED plant lamp. Journal of the American Ceramic Society, 2020, 103, 1798-1808.	3.8	32
24	<i>In situ</i> synthesis of high-efficiency CsPbBr ₃ /CsPb ₂ Br ₅ composite nanocrystals in aqueous solution of microemulsion. Green Chemistry, 2020, 22, 5257-5261.	9.0	16
25	Structure analysis, tuning photoluminescence and enhancing thermal stability on Mn4+-doped La2-xYxMgTiO6 red phosphor for agricultural lighting. Ceramics International, 2020, 46, 20173-20182.	4.8	61
26	Tuning the luminescence properties of Mn ⁴⁺ â€activated CaYAlO ₄ phosphor by coâ€doping cations for indoor plant cultivation. Journal of the American Ceramic Society, 2020, 103, 4373-4383.	3.8	16
27	Effect of Calcium-Based Catalysts on Pyrolysis Liquid Products from Municipal Sludge. Bioenergy Research, 2020, 13, 887-895.	3.9	6
28	The preparation of N, S, P self-doped and oxygen functionalized porous carbon via aerophilic interface reaction for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 12961-12972.	2.2	8
29	Pyrophosphate Phosphor Solid Solution with High Quantum Efficiency and Thermal Stability for Efficient LED Lighting. IScience, 2020, 23, 100892.	4.1	27
30	Plant habitat-conscious phosphors: Tuneable luminescence properties of Dy3+-doped Ca8ZnY(PO4)7 phosphors by co-dopants Mg2+ and B3+. Ceramics International, 2020, 46, 11717-11725.	4.8	23
31	Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO17 red phosphor for plant growth LED light. Chemical Engineering Journal, 2020, 396, 125208.	12.7	124
32	Synthesis and photoluminescence properties of novel red-emitting phosphor SrAl3BO7:Mn4+ with enhanced emission by Mg2+/Zn2+/Ca2+ incorporation for plant growth LED lighting. Ceramics International, 2019, 45, 23528-23539.	4.8	31
33	Effect of pyrolysis condition on the adsorption mechanism of heavy metals on tobacco stem biochar in competitive mode. Environmental Science and Pollution Research, 2019, 26, 26947-26962.	5.3	18
34	One-step microwave-assisted preparation of oxygen-rich multifunctional carbon quantum dots and their application for Cu2+-curcumin detection. Talanta, 2019, 205, 120117.	5.5	47
35	A novel green phosphor Sr8ZnY(PO4)7:Eu2+, Ln3+ (Ln = Pr, Tm, Yb) with broad emission band for high color rendering white-lighting-emitting diodes. Journal of Luminescence, 2019, 214, 116600.	3.1	15
36	Novel orange–red emitting phosphor Sr8ZnY(PO4)7:Sm3+ with enhanced emission based on Mg2+ and Al3+ incorporation for plant growth LED lighting. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 360-368.	5.3	31

CHENG ZHOU

#	Article	IF	CITATIONS
37	A novel Na ₃ La(PO ₄) ₂ /LaPO ₄ :Eu blue-red dual-emitting phosphor with high thermal stability for plant growth lighting. Journal of Materials Chemistry C, 2019, 7, 2385-2393.	5.5	53
38	High-performance and moisture-resistant red-emitting Cs ₂ SiF ₆ :Mn ⁴⁺ for high-brightness LED backlighting. Journal of Materials Chemistry C, 2019, 7, 2401-2407.	5.5	74
39	Photoluminescence properties and energy transfer in a novel Sr ₈ ZnY(PO ₄) ₇ :Tb ³⁺ ,Eu ³⁺ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes. Journal of Materials Chemistry C. 2019. 7. 2927-2935.	5.5	104
40	Chemical Transformation of Lead Halide Perovskite into Insoluble, Less Cytotoxic, and Brightly Luminescent CsPbBr ₃ /CsPb ₂ Br ₅ Composite Nanocrystals for Cell Imaging. ACS Applied Materials & Interfaces, 2019, 11, 24241-24246.	8.0	81
41	Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35:Mn4+ based on chemical unit engineering. Chemical Engineering Journal, 2019, 374, 381-391.	12.7	112
42	Enhancing the electrochemical performance of micron-scale SiO@C/CNTs anode via adding piezoelectric material BaTiO3 for high-power lithium ion battery. Journal of Alloys and Compounds, 2019, 800, 116-124.	5.5	21
43	Enhancing photoluminescence properties of Mn ⁴⁺ â€activated Sr _{4â~'} <i>_x</i> Ba <i>_x</i> Al ₁₄ O ₂₅ red phosphors for plant cultivation LEDs. Journal of the American Ceramic Society, 2019, 102, 7386-7396.	3.8	16
44	Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B). Applied Surface Science, 2019, 486, 292-302.	6.1	26
45	Enhanced photoluminescence and energy transfer performance of Y ₃ Al ₄ GaO ₁₂ :Mn ⁴⁺ ,Dy ³⁺ phosphors for plant growth LED lights. RSC Advances, 2019, 9, 9244-9252.	3.6	36
46	In situ modification provided by a novel wet pyrolysis system to enhance surface properties of biochar for lead immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 39-47.	4.7	27
47	Enhance the luminescence properties of Ca14Al10Zn6O35:Ti4+ phosphor via cation vacancies engineering of Ca2+ and Zn2+. Ceramics International, 2019, 45, 9977-9985.	4.8	22
48	Improving the electrochemical properties of a SiO@C/graphite composite anode for high-energy lithium-ion batteries by adding lithium fluoride. Applied Surface Science, 2019, 480, 410-418.	6.1	48
49	Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 2019, 237, 128-138.	7.8	266
50	Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Applied Surface Science, 2019, 467-468, 298-308.	6.1	35
51	Improving the electrochemical properties of SiO@C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method. Ceramics International, 2019, 45, 1950-1959.	4.8	28
52	Enhancing the electrochemical properties of LiTi2(PO4)3/C anode for aqueous rechargeable lithium battery by Li vacancy. Solid State Ionics, 2018, 315, 1-6.	2.7	22
53	Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. Journal of Cleaner Production, 2018, 187, 996-1005.	9.3	118
54	Improved luminescence and energy-transfer properties of Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ :Ti ⁴⁺ ,Mn ⁴⁺ deep-red-emitting phosphors with high brightness for light-emitting diode (LED) plant-growth lighting. Dalton Transactions, 2018, 47, 13713-13721.	3.3	61

CHENG ZHOU

#	Article	IF	CITATIONS
55	pH dependent hydrothermal synthesis of Ca14Al10Zn6O35:0.15Mn4+ phosphor with enhanced photoluminescence performance and high thermal resistance for indoor plant growth lighting. Ceramics International, 2018, 44, 19779-19786.	4.8	25
56	Tunable dual emission of Ca ₃ Al ₄ ZnO ₁₀ :Bi ³⁺ ,Mn ⁴⁺ <i>via</i> energy transfer for indoor plant growth lighting. Journal of Materials Chemistry C, 2018, 6, 8914-8922.	5.5	134
57	Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresource Technology, 2017, 232, 204-210.	9.6	273
58	Dy ³⁺ @Mn ⁴⁺ co-doped Ca ₁₄ Ga _{10â^m} Al _m Zn ₆ O ₃₅ far-red emitting phosphors with high brightness and improved luminescence and energy transfer properties for plant growth LED lights. Journal of Materials Chemistry C, 2017, 5, 8201-8210.	5.5	112
59	Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh bananaÂpeels. Journal of Cleaner Production, 2017, 165, 221-230.	9.3	114
60	Research progress and application prospects of transition metal Mn ⁴⁺ -activated luminescent materials. Journal of Materials Chemistry C, 2016, 4, 9143-9161.	5.5	228
61	Performance improvement by alumina coatings on Y ₃ Al ₅ O ₁₂ :Ce ³⁺ phosphor powder deposited using atomic layer deposition in a fluidized bed reactor. RSC Advances, 2016, 6, 76454-76462.	3.6	27
62	Origin and Luminescence of Anomalous Red-Emitting Center in Rhombohedral Ba ₉ Lu ₂ Si ₆ O ₂₄ Eu ²⁺ Blue Phosphor. Inorganic Chemistry, 2016, 55, 8628-8635.	4.0	40