

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2656273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Dynamically Regulated 14–3–3, Slob, and Slowpoke Potassium Channel Complex in Drosophila Presynaptic Nerve Terminals. Neuron, 1999, 22, 809-818.	8.1	123
2	Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports, 2019, 9, 11055.	3.3	119
3	Assembly of Human Stem Cell-Derived Cortical Spheroids and Vascular Spheroids to Model 3-D Brain-like Tissues. Scientific Reports, 2019, 9, 5977.	3.3	104
4	NMDAR Hypofunction Animal Models of Schizophrenia. Frontiers in Molecular Neuroscience, 2019, 12, 185.	2.9	95
5	14-3-3 proteins in neurological disorders. International Journal of Biochemistry and Molecular Biology, 2012, 3, 152-64.	0.1	88
6	14-3-3 targets chaperone-associated misfolded proteins to aggresomes. Journal of Cell Science, 2013, 126, 4173-86.	2.0	87
7	14-3-3 Proteins Are Required for Hippocampal Long-Term Potentiation and Associative Learning and Memory. Journal of Neuroscience, 2014, 34, 4801-4808.	3.6	76
8	Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137.	3.1	55
9	Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biological Psychiatry, 2015, 78, 386-395.	1.3	52
10	Modulation of Inactivation Properties of CaV2.2 Channels by 14-3-3 Proteins. Neuron, 2006, 51, 755-771.	8.1	47
11	Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomaterialia, 2016, 42, 114-126.	8.3	43
12	14-3-3 and aggresome formation: Implications in neurodegenerative diseases. Prion, 2014, 8, 173-177.	1.8	40
13	14-3-3 Proteins in Glutamatergic Synapses. Neural Plasticity, 2018, 2018, 1-6.	2.2	32
14	Sequential posttranslational modifications regulate PKC degradation. Molecular Biology of the Cell, 2016, 27, 410-420.	2.1	30
15	Region-specific inhibition of 14-3-3 proteins induces psychomotor behaviors in mice. NPJ Schizophrenia, 2019, 5, 1.	3.6	27
16	Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 546-558.	3.1	25
17	Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 2922-2933.	5.2	25
18	Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Molecular and Cell Biology, 2020, 21, 58.	2.0	20

Үі Zнои

#	Article	IF	CITATIONS
19	Cerebellar Differentiation from Human Stem Cells Through Retinoid, Wnt, and Sonic Hedgehog Pathways. Tissue Engineering - Part A, 2021, 27, 881-893.	3.1	15
20	Sex-specific effects of social isolation stress and ketamine on hippocampal plasticity. Neuroscience Letters, 2022, 766, 136301.	2.1	12
21	Modulation of GluK2a Subunit-containing Kainate Receptors by 14-3-3 Proteins. Journal of Biological Chemistry, 2013, 288, 24676-24690.	3.4	11
22	Cellular and molecular responses to acute cocaine treatment in neuronal-like N2a cells: potential mechanism for its resistance in cell death. Cell Death Discovery, 2018, 4, 13.	4.7	11
23	Î∫ω-Plectoxin-Pt1a: An Excitatory Spider Toxin with Actions on both Ca2+ and Na+ Channels. PLoS ONE, 2013, 8, e64324.	2.5	10
24	14-3-3Ï,, Promotes Surface Expression of Cav2.2 (α1B) Ca2+ Channels. Journal of Biological Chemistry, 2015, 290, 2689-2698.	3.4	8
25	Forebrain excitatory neuron-specific SENP2 knockout mouse displays hyperactivity, impaired learning and memory, and anxiolytic-like behavior. Molecular Brain, 2020, 13, 59.	2.6	8
26	The 14-3-3 Protein Family and Schizophrenia. Frontiers in Molecular Neuroscience, 2022, 15, 857495.	2.9	4
27	Inhibition of 14-3-3 Proteins Alters Neural Oscillations in Mice. Frontiers in Neural Circuits, 2021, 15, 647856.	2.8	2
28	14-3-3 Dysfunction in Dorsal Hippocampus CA1 (dCA1) Induces Psychomotor Behavior via a dCA1-Lateral Septum-Ventral Tegmental Area Pathway. Frontiers in Molecular Neuroscience, 2022, 15, 817227.	2.9	2
29	14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS ONE, 2021, 16, e0261791.	2.5	2
30	Data and experimental setup for a comprehensive study of ketamine's effect on neuronal plasticity following social isolation rearing in male and female rats. Data in Brief, 2022, , 108338.	1.0	0