Peter Kuipers Munneke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/265588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	20
2	Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density. Cryosphere, 2021, 15, 1065-1085.	3.9	21
3	Assessing Global Presentâ€Day Surface Mass Transport and Glacial Isostatic Adjustment From Inversion of Geodetic Observations. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020713.	3.4	6
4	Separating Longâ€Term and Shortâ€Term Mass Changes of Antarctic Ice Drainage Basins: A Coupled State Space Analysis of Satellite Observations and Model Products. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005966.	2.8	5
5	Comparison of kilometre and subâ€kilometre scale simulations of a foehn wind event over the Larsen C Ice Shelf, Antarctic Peninsula using the Met Office Unified Model (<scp>MetUM</scp>). Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3472-3492.	2.7	9
6	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
7	Increased variability in Greenland Ice Sheet runoff from satellite observations. Nature Communications, 2021, 12, 6069.	12.8	23
8	Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf. Cryosphere, 2021, 15, 5639-5658.	3.9	2
9	Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface Energy Budget Regimes and the Impact of Foehn. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032463.	3.3	39
10	Surface Melting Drives Fluctuations in Airborne Radar Penetration in West Central Greenland. Geophysical Research Letters, 2020, 47, e2020GL088293.	4.0	11
11	Accumulation rates (2009–2017) in Southeast Greenland derived from airborne snow radar and comparison with regional climate models. Annals of Glaciology, 2020, 61, 225-233.	1.4	11
12	Reflections on the anomalous ANITA events: the Antarctic subsurface as a possible explanation. Annals of Glaciology, 2020, 61, 92-98.	1.4	14
13	Sensitivity of inverse glacial isostatic adjustment estimates over Antarctica. Cryosphere, 2020, 14, 349-366.	3.9	10
14	Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere, 2020, 14, 2331-2368.	3.9	72
15	Bayesian calibration of firn densification models. Cryosphere, 2020, 14, 3017-3032.	3.9	10
16	The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet. Cryosphere, 2020, 14, 3785-3810.	3.9	38
17	The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica. Cryosphere, 2020, 14, 4165-4180.	3.9	14
18	Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica. Cryosphere, 2019, 13, 1473-1485.	3.9	28

Peter Kuipers Munneke

#	Article	IF	CITATIONS
19	Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016). Cryosphere, 2018, 12, 1643-1649.	3.9	42
20	The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nature Climate Change, 2018, 8, 1053-1061.	18.8	135
21	Decline in Surface Melt Duration on Larsen C Ice Shelf Revealed by The Advanced Scatterometer (ASCAT). Earth and Space Science, 2018, 5, 578-591.	2.6	30
22	The K-transect on the western Greenland Ice Sheet: Surface energy balance (2003–2016). Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	30
23	Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model. Cryosphere, 2018, 12, 2901-2922.	3.9	19
24	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ1: Greenland (1958–2016). Cryosphere, 2018, 12, 811-831.	3.9	194
25	Intense Winter Surface Melt on an Antarctic Ice Shelf. Geophysical Research Letters, 2018, 45, 7615-7623.	4.0	65
26	A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling. Atmosphere, 2018, 9, 172.	2.3	27
27	The K-transect in west Greenland: Automatic weather station data (1993–2016). Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	57
28	An intercomparison and validation of satelliteâ€based surface radiative energy flux estimates over the Arctic. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4829-4848.	3.3	39
29	Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1139-1153.	2.8	13
30	The Impact of Föhn Winds on Surface Energy Balance During the 2010–2011 Melt Season Over Larsen C Ice Shelf, Antarctica. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,062.	3.3	39
31	Systems Analysis of complex glaciological processes and application to calving of Amery Ice Shelf, East Antarctica. Annals of Glaciology, 2017, 58, 60-71.	1.4	1
32	Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica. Cryosphere, 2017, 11, 2411-2426.	3.9	16
33	Centuries of intense surface melt on Larsen C Ice Shelf. Cryosphere, 2017, 11, 2743-2753.	3.9	19
34	Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 2017, 5, .	1.8	62
35	On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 2016, 10, 1933-1946.	3.9	358
36	Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ. Cryosphere, 2016, 10, 597-611.	3.9	10

#	Article	IF	CITATIONS
37	A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1834-1848.	2.8	38
38	Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica. Journal of Glaciology, 2016, 62, 170-184.	2.2	7
39	A highâ€resolution record of Greenland mass balance. Geophysical Research Letters, 2016, 43, 7002-7010.	4.0	146
40	Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nature Communications, 2016, 7, 11897.	12.8	63
41	Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2016, 2, e1600931.	10.3	108
42	Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three highâ€resolution atmospheric models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1335-1347.	3.3	59
43	Constraints on snow accumulation and firn density in Greenland using GPS receivers. Journal of Glaciology, 2015, 61, 101-114.	2.2	20
44	Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere, 2015, 9, 1831-1844.	3.9	175
45	Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere, 2015, 9, 2009-2025.	3.9	73
46	Antarctic firn compaction rates from repeat-track airborne radar data: II. Firn model evaluation. Annals of Glaciology, 2015, 56, 167-174.	1.4	19
47	A model study of the response of dry and wet firn to climate change. Annals of Glaciology, 2015, 56, 1-8.	1.4	28
48	Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 2015, 8, 927-932.	12.9	170
49	Present and future variations in Antarctic firn air content. Cryosphere, 2014, 8, 1711-1723.	3.9	52
50	Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophysical Research Letters, 2014, 41, 476-483.	4.0	66
51	Firn air depletion as a precursor of Antarctic ice-shelf collapse. Journal of Glaciology, 2014, 60, 205-214.	2.2	113
52	Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarctic Science, 2014, 26, 625-635.	0.9	92
53	Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. Journal of Geophysical Research F: Earth Surface, 2013, 118, 315-330.	2.8	116
54	Satelliteâ€based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 2013, 40, 6148-6153.	4.0	111

Peter Kuipers Munneke

#	Article	IF	CITATIONS
55	Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model. Cryosphere, 2012, 6, 1175-1186.	3.9	109
56	Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica. Cryosphere, 2012, 6, 841-857.	3.9	32
57	Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere, 2012, 6, 353-363.	3.9	79
58	Insignificant change in Antarctic snowmelt volume since 1979. Geophysical Research Letters, 2012, 39, .	4.0	61
59	A new, highâ€resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters, 2012, 39, .	4.0	315
60	A new albedo parameterization for use in climate models over the Antarctic ice sheet. Journal of Geophysical Research, 2011, 116, .	3.3	107
61	Assessing the retrieval of cloud properties from radiation measurements over snow and ice. International Journal of Climatology, 2011, 31, 756-769.	3.5	31
62	Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarctic Science, 2010, 22, 87.	0.9	37
63	The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland. Cryosphere, 2009, 3, 155-165.	3.9	62
64	Clearâ \in sky Atmospheric Radiative Transfer: A Model Intercomparison for Shortwave Irradiances. , 2009, , .		1
65	Clearâ€sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, Netherlands. Journal of Geophysical Research, 2009, 114, .	3.3	33
66	Surface radiation balance in the ablation zone of the west Greenland ice sheet. Journal of Geophysical Research, 2008, 113, .	3.3	101
67	Analysis of clearâ€sky Antarctic snow albedo using observations and radiative transfer modeling. Journal of Geophysical Research, 2008, 113, .	3.3	30