
Elizabeth E Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viral Reservoir Capacity of Wild <i>Prunus</i> Alternative Hosts of Plum Pox Virus Through Multiple Cycles of Transmission and Dormancy. Plant Disease, 2022, 106, 101-106.	1.4	1
2	Insights regarding resistance of â€~Nemaguard' rootstock to the bacterium Xylella fastidiosa. Plant Disease, 2022, , .	1.4	1
3	Translatome Profiling of Plum Pox Virus–Infected Leaves in European Plum Reveals Temporal and Spatial Coordination of Defense Responses in Phloem Tissues. Molecular Plant-Microbe Interactions, 2020, 33, 66-77.	2.6	17
4	Dynamic changes impact the plum pox virus population structure during leaf and bud development. Virology, 2020, 548, 192-199.	2.4	7
5	Immunoreagents for development of a diagnostic assay specific for <i>Rathayibacter toxicus</i> . Food and Agricultural Immunology, 2020, 31, 231-242.	1.4	3
6	Grapevine phenolic compounds influence cell surface adhesion of Xylella fastidiosa and bind to lipopolysaccharide. PLoS ONE, 2020, 15, e0240101.	2.5	6
7	The Identification and Conservation of Tunicaminyluracil-Related Biosynthetic Gene Clusters in Several Rathayibacter Species Collected From Australia, Africa, Eurasia, and North America. Frontiers in Microbiology, 2019, 10, 2914.	3.5	3
8	Partial Proteome of the Corynetoxinâ€Producing Gramâ€Positive Bacterium, Rathayibacter toxicus. Proteomics, 2018, 18, 1700350.	2.2	2
9	Evolution of the U.S. Biological Select Agent Rathayibacter toxicus. MBio, 2018, 9, .	4.1	10
10	<i>Rathayibacter toxicus</i> , Other <i>Rathayibacter</i> Species Inducing Bacterial Head Blight of Grasses, and the Potential for Livestock Poisonings. Phytopathology, 2017, 107, 804-815.	2.2	39
11	Complete Genome Sequence of Rathayibacter toxicus Phage NCPPB3778. Genome Announcements, 2017, 5, .	0.8	4
12	Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis. PLoS ONE, 2017, 12, e0183005.	2.5	13
13	Deep 16S rRNA gene sequencing of anterior foregut microbiota from the blueâ€green sharpshooter (<i>Graphocephala atropunctata</i>). Journal of Applied Entomology, 2016, 140, 801-805.	1.8	7
14	Direct Evidence of Egestion and Salivation of <i>Xylella fastidiosa</i> Suggests Sharpshooters Can Be "Flying Syringes― Phytopathology, 2015, 105, 608-620.	2.2	25
15	Susceptibility to Xylella fastidiosa in a First-generation Hybrid from a non-traditional Peach–Almond Cross. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 337-340.	1.0	6
16	Anterior Foregut Microbiota of the Glassy-Winged Sharpshooter Explored Using Deep 16S rRNA Gene Sequencing from Individual Insects. PLoS ONE, 2014, 9, e106215.	2.5	23
17	Toxin-antitoxin systems mqsR/ygiT and dinJ/relE of Xylella fastidiosa. Physiological and Molecular Plant Pathology, 2014, 87, 59-68.	2.5	29
18	<i>Xylella fastidiosa</i> Plasmid-Encoded PemK Toxin Is an Endoribonuclease. Phytopathology, 2012, 102, 32-40.	2.2	25

Elizabeth E Rogers

#	Article	IF	CITATIONS
19	Evaluation of Arabidopsis thaliana as a Model Host for Xylella fastidiosa. Molecular Plant-Microbe Interactions, 2012, 25, 747-754.	2.6	8
20	A Conjugative 38 kB Plasmid Is Present in Multiple Subspecies of Xylella fastidiosa. PLoS ONE, 2012, 7, e52131.	2.5	23
21	Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals regionâ€specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant, Cell and Environment, 2010, 33, 223-243.	5.7	158
22	Functional Characterization of Replication and Stability Factors of an Incompatibility Group P-1 Plasmid from <i>Xylella fastidiosa</i> . Applied and Environmental Microbiology, 2010, 76, 7734-7740.	3.1	14
23	Plasmids of Xylella fastidiosa mulberry-infecting strains share extensive sequence identity and gene complement with pVEIS01 from the earthworm symbiont Verminephrobacter eiseniae. Physiological and Molecular Plant Pathology, 2010, 74, 238-245.	2.5	19
24	Two MATE proteins play a role in iron efficiency in soybean. Journal of Plant Physiology, 2009, 166, 1453-1459.	3.5	56
25	Differential Susceptibility of Prunus Germplasm (Subgenus Amygdalus) to a California Isolate of Xylella fastidiosa. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1928-1931.	1.0	28
26	The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds. Plant Physiology, 2008, 146, 323-324.	4.8	225
27	The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation. Plant Physiology, 2007, 144, 197-205.	4.8	525
28	ArabidopsiscpFtsYmutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity. Plant Journal, 2006, 47, 467-479.	5.7	23
29	Role of FRD3 in Iron Translocation and Homeostasis. , 2006, , 327-339.		1
30	FRD3 Controls Iron Localization in Arabidopsis. Plant Physiology, 2004, 136, 2523-2531.	4.8	254
31	Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 1215-1221.	17.5	407
32	FRD3, a Member of the Multidrug and Toxin Efflux Family, Controls Iron Deficiency Responses in Arabidopsis. Plant Cell, 2002, 14, 1787-1799.	6.6	311
33	Iron Acquisition in Plants. , 2002, , .		3
34	Altered selectivity in an Arabidopsis metal transporter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12356-12360.	7.1	436
35	Correlation of defense gene induction defects with powdery mildew susceptibility inArabidopsisenhanced disease susceptibility mutants. Plant Journal, 1998, 16, 473-485.	5.7	232
36	Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression Plant Cell, 1997, 9, 305-316.	6.6	227

#	Article	IF	CITATIONS
37	USE OF ARABIDOPSIS FOR GENETIC DISSECTION OF PLANT DEFENSE RESPONSES. Annual Review of Genetics, 1997, 31, 547-569.	7.6	136
38	Phytoalexin-Deficient Mutants of Arabidopsis Reveal That <i>PAD4</i> Encodes a Regulatory Factor and That Four <i>PAD</i> Genes Contribute to Downy Mildew Resistance. Genetics, 1997, 146, 381-392.	2.9	332
39	Isolation of Arabidopsis Mutants With Enhanced Disease Susceptibility by Direct Screening. Genetics, 1996, 143, 973-982.	2.9	520
40	Mode of Action of the <i>Arabidopsis thaliana</i> Phytoalexin Camalexin and Its Role in <i>Arabidopsis-Pathogen</i> Interactions. Molecular Plant-Microbe Interactions, 1996, 9, 748.	2.6	139
41	Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochemical Journal, 1994, 301, 727-735.	3.7	105
42	Concerning the formation and the kinetics of phenylium ions. International Journal of Mass Spectrometry and Ion Processes, 1989, 92, 65-77.	1.8	34