Dheeraj Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facts or Artifacts: Pitfalls in Quantifying Sub-ppm Levels of Ammonia Produced from Electrochemical Nitrogen Reduction. ACS Omega, 2022, 7, 1874-1882.	3.5	7
2	Improvement in Oxygen Evolution Performance of NiFe Layered Double Hydroxide Grown in the Presence of 1T-Rich MoS ₂ . ACS Applied Materials & Interfaces, 2022, 14, 31951-31961.	8.0	8
3	Lightâ€Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 19720-19724.	13.8	135
4	Nanoscale Engineering of Grapheneâ€Viologen Based 3D Covalent Organic Polymer Interfaces Leading to Efficient Chargeâ€Transfer for Pseudocapacitive Energy Storage. ChemistrySelect, 2019, 4, 8089-8094.	1.5	4
5	Dual targeting of folate receptor-expressing glioma tumor-associated macrophages and epithelial cells in the brain using a carbon nanosphere–cationic folate nanoconjugate. Nanoscale Advances, 2019, 1, 3555-3567.	4.6	29
6	Frontispiece: Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
7	Frontispiz: Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie, 2019, 131, .	2.0	11
8	Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie - International Edition, 2019, 58, 8330-8335.	13.8	60
9	Bio-inspired temporal regulation of ion-transport in nanochannels. Nanoscale Advances, 2019, 1, 1847-1852.	4.6	12
10	Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie, 2019, 131, 8418-8423.	2.0	1
11	Oxidative Dehydrogenation of Propane over a High Surface Area Boron Nitride Catalyst: Exceptional Selectivity for Olefins at High Conversion. ACS Omega, 2018, 3, 369-374.	3.5	65
12	Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Molecular Medicine, 2018, 10, .	6.9	61
13	Aqueous Phase Phosphorescence: Ambient Triplet Harvesting of Purely Organic Phosphors via Supramolecular Scaffolding. Angewandte Chemie - International Edition, 2018, 57, 17115-17119.	13.8	101
14	Pick a Wick: A Simple, Ultrafast Combustion Synthesis of Co ₃ O ₄ Dispersed Carbon for Enhanced Oxygen Evolution Kinetics. ACS Applied Energy Materials, 2018, 1, 4448-4452.	5.1	11
15	Encapsulation of Silver Nanoparticles in an Amineâ€Functionalized Porphyrin Metal–Organic Framework and Its Use as a Heterogeneous Catalyst for CO ₂ Fixation under Atmospheric Pressure. Chemistry - an Asian Journal, 2018, 13, 2677-2684.	3.3	40
16	Simple and Facile Approach To Create Charge Reversible Pores via Hydrophobic Anchoring of Ionic Amphiphiles. ACS Applied Materials & Interfaces, 2017, 9, 9136-9142.	8.0	7
17	Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 6025-6031.	10.3	73
18	Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C ₂ H ₂ , CO ₂ and separation for CO ₂ /N ₂ and CO ₂ /CH ₄ . lournal of Materials Chemistry A, 2017, 5, 8423-8430.	10.3	67

Dheeraj Kumar Singh

#	Article	IF	CITATIONS
19	An Extremely High Surface Area Mesoporous-Microporous-Networked Pillared Carbon for High Stability Li-S and Intermediate Temperature Na-S Batteries. ChemistrySelect, 2017, 2, 9249-9255.	1.5	11
20	In Situ Growth of Self-Assembled ZIF-8–Aminoclay Nanocomposites with Enhanced Surface Area and CO ₂ Uptake. Inorganic Chemistry, 2017, 56, 9426-9435.	4.0	26
21	No More HF: Teflonâ€Assisted Ultrafast Removal of Silica to Generate Highâ€Surfaceâ€Area Mesostructured Carbon for Enhanced CO ₂ Capture and Supercapacitor Performance. Angewandte Chemie - International Edition, 2016, 55, 2032-2036.	13.8	88
22	Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions. Journal of Solid State Chemistry, 2016, 244, 84-92.	2.9	14
23	MOF–aminoclay composites for superior CO ₂ capture, separation and enhanced catalytic activity in chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11378-11381.	4.1	62
24	No More HF: Teflonâ€Assisted Ultrafast Removal of Silica to Generate High‣urfaceâ€Area Mesostructured Carbon for Enhanced CO ₂ Capture and Supercapacitor Performance. Angewandte Chemie, 2016, 128, 2072-2076.	2.0	5
25	Reversible control of pore size and surface chemistry of mesoporous silica through dynamic covalent chemistry: philicity mediated catalysis. Nanoscale, 2015, 7, 13358-13362.	5.6	11
26	Shape-directed compartmentalized delivery of a nanoparticle-conjugated small-molecule activator of an epigenetic enzyme in the brain. Journal of Controlled Release, 2015, 217, 151-159.	9.9	25
27	Shaping up: spontaneous formation of ordered mesoscopic salt bowls. RSC Advances, 2012, 2, 5947.	3.6	0
28	Honeycomb Porous Framework of Zinc(II): Effective Host for Palladium Nanoparticles for Efficient Three omponent (A ³) Coupling and Selective Gas Storage. ChemPlusChem, 2012, 77, 743-747.	2.8	38
29	Lightâ€Harvesting Hybrid Hydrogels: Energyâ€Transferâ€Induced Amplified Fluorescence in Noncovalently Assembled Chromophore–Organoclay Composites. Angewandte Chemie - International Edition, 2011, 50, 1179-1184.	13.8	158
30	Single step strategy for crafting tin/carbon soot composite as highly stable Liâ€ion battery anode. Electrochemical Science Advances, 0, , e2100019.	2.8	0