Claus Nerlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655309/publications.pdf

Version: 2024-02-01

94433 133252 6,459 62 37 59 h-index citations g-index papers 65 65 65 9463 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	DNMT1 Deficiency Impacts on Plasmacytoid Dendritic Cells in Homeostasis and Autoimmune Disease. Journal of Immunology, 2022, 208, 358-370.	0.8	5
2	To bi or not to bi: Acute erythroid leukemias and hematopoietic lineage choice. Experimental Hematology, 2021, 97, 6-13.	0.4	1
3	Liver haploinsufficiency of RuvBL1 causes hepatic insulin resistance and enhances hepatocellular carcinoma progression. International Journal of Cancer, 2020, 146, 3410-3422.	5.1	18
4	CD34 and EPCR coordinately enrich functional murine hematopoietic stem cells under normal and inflammatory conditions. Experimental Hematology, 2020, 81, 1-15.e6.	0.4	35
5	Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGF \hat{l}^21 as regulators of hematopoietic ageing. Nature Communications, 2020, 11, 4075.	12.8	66
6	C/EBPÎ \pm and GATA-2 Mutations Induce Bilineage Acute Erythroid Leukemia through Transformation of a Neomorphic Neutrophil-Erythroid Progenitor. Cancer Cell, 2020, 37, 690-704.e8.	16.8	16
7	Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell, 2019, 25, 407-418.e6.	11.1	202
8	CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex. Leukemia, 2019, 33, 1608-1619.	7.2	19
9	Identification of two distinct pathways of human myelopoiesis. Science Immunology, 2019, 4, .	11.9	69
10	Cell-intrinsic depletion of Aml1-ETO-expressing pre-leukemic hematopoietic stem cells by K-Ras activating mutation. Haematologica, 2019, 104, 2215-2224.	3.5	9
11	Single-cell analysis of bone marrow–derived CD34+ cells from children with sickle cell disease and thalassemia. Blood, 2019, 134, 2111-2115.	1.4	21
12	Myeloid lineage enhancers drive oncogene synergy in CEBPA/CSF3R mutant acute myeloid leukemia. Nature Communications, 2019, 10, 5455.	12.8	22
13	Ontogenic Changes in Hematopoietic Hierarchy Determine Pediatric Specificity and Disease Phenotype in Fusion Oncogene–Driven Myeloid Leukemia. Cancer Discovery, 2019, 9, 1736-1753.	9.4	37
14	Haematopoiesis in the era of advanced single-cell technologies. Nature Cell Biology, 2019, 21, 2-8.	10.3	89
15	Inflammatory signals directly instruct PU.1 in HSCs via TNF. Blood, 2019, 133, 816-819.	1.4	53
16	Dependence on Myb expression is attenuated in myeloid leukaemia with N-terminal CEBPA mutations. Life Science Alliance, 2019, 2, e201800207.	2.8	6
17	Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Developmental Cell, 2018, 44, 634-641.e4.	7. 0	154
18	Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. Blood, 2018, 131, 1712-1719.	1.4	14

#	Article	IF	CITATIONS
19	Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature, 2018, 554, 106-111.	27.8	269
20	Bi-directional signaling by membrane-bound KitL induces proliferation and coordinates thymic endothelial cell and thymocyte expansion. Nature Communications, 2018, 9, 4685.	12.8	9
21	Direct role of <scp>FLT</scp> 3 in regulation of early lymphoid progenitors. British Journal of Haematology, 2018, 183, 588-600.	2.5	12
22	Kit ligand has a critical role in mouse yolk sac and aorta–gonad–mesonephros hematopoiesis. EMBO Reports, 2018, 19, .	4.5	35
23	Human adult HSCs can be discriminated from lineage-committed HPCs by the expression of endomucin. Blood Advances, 2018, 2, 1628-1632.	5.2	10
24	Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Science Alliance, 2018, 1, e201800061.	2.8	36
25	A transit-amplifying population underpins the efficient regenerative capacity of the testis. Journal of Experimental Medicine, 2017, 214, 1631-1641.	8.5	50
26	Wnt/ \hat{l}^2 -Catenin Signaling Induces Integrin $\hat{l}\pm4\hat{l}^21$ in T Cells and Promotes a Progressive Neuroinflammatory Disease in Mice. Journal of Immunology, 2017, 199, 3031-3041.	0.8	22
27	Studying BDNF/TrkB Signaling: High-Throughput Microfluidic Gene Expression Analysis from Rare or Limited Samples of Adult and Aged Central Neurons. Neuromethods, 2017, , 77-86.	0.3	0
28	Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD–induced myeloproliferation. Journal of Experimental Medicine, 2017, 214, 2005-2021.	8.5	43
29	Insights into specificity, redundancy and new cellular functions of C/EBPa and C/EBPb transcription factors through interactome network analysis. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 467-476.	2.4	19
30	Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nature Communications, 2016, 7, 11075.	12.8	238
31	Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. Nature Immunology, 2016, 17, 666-676.	14.5	188
32	Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nature Cell Biology, 2016, 18, 607-618.	10.3	519
33	Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nature Immunology, 2016, 17, 1424-1435.	14.5	49
34	Hematopoietic Lineage Diversification, Simplified. Cell Stem Cell, 2016, 19, 148-150.	11.1	3
35	Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature, 2016, 535, 299-302.	27.8	180
36	A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nature Cell Biology, 2016, 18, 157-167.	10.3	57

#	Article	IF	CITATIONS
37	Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood, 2015, 126, 1214-1223.	1.4	157
38	Pharmacological targeting of the Wdr5-MLL interaction in C/EBPÎ \pm N-terminal leukemia. Nature Chemical Biology, 2015, 11, 571-578.	8.0	227
39	Interleukin-1 Drives Precocious Myeloid Differentiation of Hematopoietic Stem Cells at the Expense of Self-Renewal. Blood, 2015, 126, 778-778.	1.4	0
40	Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. Journal of Experimental Medicine, 2014, 211, 181-188.	8.5	111
41	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	16.8	272
42	Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 2013, 502, 232-236.	27.8	493
43	FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors. Cell Reports, 2013, 3, 1766-1776.	6.4	40
44	FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO Journal, 2012, 31, 351-365.	7.8	84
45	Pontin is essential for murine hematopoietic stem cell survival. Haematologica, 2012, 97, 1291-1294.	3.5	41
46	The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nature Immunology, 2012, 13, 412-419.	14.5	132
47	Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD–induced myeloproliferation. Blood, 2011, 118, 3613-3621.	1.4	26
48	Transcriptional and translational control of C/EBPs: The case for "deep―genetics to understand physiological function. BioEssays, 2010, 32, 680-686.	2.5	24
49	Hematopoietic Stem Cell Expansion Precedes the Generation of Committed Myeloid Leukemia-Initiating Cells in C/EBPα Mutant AML. Cancer Cell, 2009, 16, 390-400.	16.8	133
50	C/EBPÎ \pm and Î 2 couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nature Cell Biology, 2009, 11, 1181-1190.	10.3	101
51	Modeling of C/EBPα Mutant Acute Myeloid Leukemia Reveals a Common Expression Signature of Committed Myeloid Leukemia-Initiating Cells. Cancer Cell, 2008, 13, 299-310.	16.8	225
52	C/EBPs: recipients of extracellular signals through proteome modulation. Current Opinion in Cell Biology, 2008, 20, 180-185.	5.4	89
53	Distinct C/EBPÎ \pm motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO Journal, 2007, 26, 1081-1093.	7.8	85
54	Neurotrophin/Trk receptor signaling mediates C/EBPalpha, -beta and NeuroD recruitment to immediate-early gene promoters in neuronal cells and requires C/EBPs to induce immediate-early gene transcription. Neural Development, 2007, 2, 4.	2.4	63

#	Article	IF	CITATION
55	The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends in Cell Biology, 2007, 17, 318-324.	7.9	357
56	Retroviral Insertional Mutagenesis Screen in a C/EBPalpha Proliferative Genetic Background Blood, 2006, 108, 4342-4342.	1.4	0
57	Loss of C/EBPα cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. Journal of Experimental Medicine, 2005, 202, 85-96.	8.5	101
58	C/EBPα mutations in acute myeloid leukaemias. Nature Reviews Cancer, 2004, 4, 394-400.	28.4	241
59	E2F Repression by C/EBPα Is Required for Adipogenesis and Granulopoiesis In Vivo. Cell, 2001, 107, 247-258.	28.9	292
60	Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes and Development, 2001, 15, 3208-3216.	5.9	167
61	GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood, 2000, 95, 2543-2551.	1.4	312
62	Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes and Development, 2000, 14, 2515-2525.	5.9	109