Vladislav Yu Kuznetsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	POLLEN COMPLEXES OF THE MIKULINO (EEMIAN) INTERGLACIAL'S INITIAL PHASE IN THE UPPER VOLGA BASIN (ACCORDING TO THE STUDY OF THE MALAYA KOSHA RIVER SECTION). , 2022, , .		0
2	Mass-wasting processes input in proximal metalliferous sediments: A case study of the Pobeda hydrothermal fields. Marine Geology, 2021, 438, 106517.	2.1	7
3	Last interglacial environment of the Baikal Region (Southern Siberia, Russia) based on analysis of fossil invertebrates and plants. Palaeoentomology, 2021, 4, .	1.0	1
4	lce Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka. Quaternary Research, 2019, 92, 530-548.	1.7	26
5	The terrestrial Eemian to late Weichselian sediment record at Beckentin (NE-Germany): First results from lithostratigraphic, palynological and geochronological analyses. Quaternary International, 2019, 501, 90-108.	1.5	9
6	Late Pleistocene paleosols in the extra-glacial regions of Northwestern Eurasia: Pedogenesis, post-pedogenic transformation, paleoenvironmental inferences. Quaternary International, 2019, 501, 174-192.	1.5	17
7	Palaeoecological investigations and 230Th/U dating of the Eemian Interglacial peat sequence from Neubrandenburg-Hinterste MÃ1⁄4hle (Mecklenburg-Western Pomerania, NE Germany). Quaternary International, 2018, 467, 62-78.	1.5	15
8	U–Th age of the Kazantsevo (MIS 5) Horizon of the Upper Neopleistocene Ust Oda reference section, Baikal Region. Doklady Earth Sciences, 2017, 473, 266-270.	0.7	2
9	Chronostratigraphy of the Cheremoshnik key section (Yaroslavl Volga region) based on new geochronological, palynological, and paleosol data. Doklady Earth Sciences, 2017, 472, 244-247.	0.7	2
10	Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geology Reviews, 2017, 87, 147-154.	2.7	37
11	Composition and characteristics of the ferromanganese crusts from the western Arctic Ocean. Ore Geology Reviews, 2017, 87, 88-99.	2.7	43
12	lce Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quaternary Science Reviews, 2016, 147, 298-311.	3.0	37
13	Environmental and climate reconstructions of the Fore-Baikal area during MIS 5-1: Multiproxy record from terrestrial sediments of the Ust-Oda section (Siberia, Russia). Journal of Asian Earth Sciences, 2016, 129, 220-230.	2.3	20
14	Uranium-thorium dating of high sea terraces of the Spitsbergen Archipelago. Vestnik of Saint Petersburg University Geology Geography, 2016, , 54-64.	0.0	0
15	Geochronology and Palaeomagnetic Records of the SnaigupÄ—lÄ— Section in South Lithuania. Geochronometria, 2015, 42, .	0.8	4
16	Palaeoecological investigations and 230Th/U dating of Eemian interglacial peat sequence of Banzin (Mecklenburg-Western Pomerania, NE-Germany). Quaternary International, 2015, 386, 122-136.	1.5	17
17	Comparative ²³⁰ Th/U and ¹⁴ C Dating of a Buried Stump Layer (Western) Tj ETQq1 1 (0.784314 0.8	rgBT /Overlo
18	A new approach to isotope dating of buried organic-rich deposits with an example from the Kuryador	0.7	7

section, upper Vychegda valley. Doklady Earth Sciences, 2015, 462, 570-574.

0.7

#	Article	IF	CITATIONS
19	The oldest seafloor massive sulfide deposits at the Mid-Atlantic Ridge: ²³⁰ Th/U chronology and composition. Geochronometria, 2015, 42, .	0.8	12
20	Environmental changes at final warming of Middle Pleistocene (MIS 7) in South Kurils. Quaternary International, 2015, 355, 90-100.	1.5	0
21	Landscape evolution in the periglacial zone of Eastern Europe since MIS5: Proxies from paleosols and sediments of the Cheremoshnik key site (Upper Volga, Russia). Quaternary International, 2015, 365, 26-41.	1.5	18
22	Middle Pleistocene warming phase based on the deposits of a buried oyster reef, Southern Lesser Kuril Islands. Doklady Earth Sciences, 2014, 455, 376-382.	0.7	0
23	Climatic Stratigraphy of the Kazantsevo Horizon (as an Analogue of MIS-5) in the Boreal Zone of Western Siberia. Springer Geology, 2014, , 965-968.	0.3	Ο
24	The First Case Study of 230Th–U Dating of Buried Wood Remnants from Siberia. Springer Geology, 2014, , 293-296.	0.3	0
25	Stratigraphy of bottom sediments in the Mendeleev Ridge area (Arctic Ocean). Doklady Earth Sciences, 2013, 450, 602-606.	0.7	10
26	Massive sulfide ores of the northern equatorial Mid-Atlantic Ridge. Oceanology, 2013, 53, 607-619.	1.2	42
27	First 230Th/U date of Middle Pleistocene peat bog in Siberia (key section Krivosheino, Western Siberia). Geochronometria, 2012, 39, 241-251.	0.8	11
28	New hydrothermal ore fields in the Mid-Atlantic Ridge: Zenith-Victoria (20°08′ N) and Petersburg (19°52	′) Tj ETQ 0.7	q0 0 0 rgBT /C
29	Last interglacial climate changes and environments of the Lesser Kuril arc, north-western Pacific. Quaternary International, 2011, 241, 35-50.	1.5	6
30	230Th/U chronology of ore formation within the semyenov hydrothermal district (13°31′ N) at the Mid-Atlantic ridge. Geochronometria, 2011, 38, 72-76.	0.8	26
31	The first case study of 230Th/U and 14C dating of mid-valdai organic deposits. Doklady Earth Sciences, 2011, 438, 598-602.	0.7	10
32	The first uranium-thorium dating of the Middle Neopleistocene peat in West Siberia. Doklady Earth Sciences, 2010, 433, 915-919.	0.7	3
33	Seafloor Massive Sulfides from the Northern Equatorial Mid-Atlantic Ridge: New Discoveries and Perspectives. Marine Georesources and Geotechnology, 2010, 28, 222-239.	2.1	62
34	Assessment of the long-term safety of radioactive waste disposal: 1. Paleoreconstruction of groundwater formation conditions. Water Resources, 2009, 36, 206-213.	0.9	9
35	The first find of buried low-temperature hydrothermal deposits in the Mid-Atlantic Ridge rift valley. Doklady Earth Sciences, 2009, 424, 1-6.	0.7	2
36	New outcrop of buried Kazantsevo peat at lower reaches of the Irtysh River. Doklady Earth Sciences, 2008, 419, 200-204.	0.7	5

#	Article	IF	CITATIONS
37	Geochronology and landscape-climatic environments of the Early Zyryanian Interstadial in West Siberia. Doklady Earth Sciences, 2008, 421, 796-799.	0.7	7
38	Late Quaternary marine terraces in the Mediterranean coastal area of Syria: Geochronology and neotectonics. Quaternary International, 2008, 190, 158-170.	1.5	15
39	Two New Hydrothermal Fields at the Mid-Atlantic Ridge. Marine Georesources and Geotechnology, 2008, 26, 308-316.	2.1	34
40	The 230Th/U dating of sulfide ores in the ocean: Methodical possibilities, measurement results, and perspectives of application. Doklady Earth Sciences, 2007, 417, 1202-1205.	0.7	14
41	Paleoclimates and chronology of the middle Würm megainterstadial on the West Siberian Plain. Doklady Earth Sciences, 2006, 411, 1457-1461.	0.7	5
42	Origin of high 234U/238U ratio in post-permafrost aquifers. , 2006, , 847-856.		2