Masato Kitamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2654923/publications.pdf

Version: 2024-02-01

89	7,658	33 h-index	85
papers	citations		g-index
112	112	112	4120 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Enantioselective Addition of Organometallic Reagents to Carbonyl Compounds: Chirality Transfer, Multiplication, and Amplification. Angewandte Chemie International Edition in English, 1991, 30, 49-69.	4.4	1,176
2	Asymmetric hydrogenation of .betaketo carboxylic esters. A practical, purely chemical access to .betahydroxy esters in high enantiomeric purity. Journal of the American Chemical Society, 1987, 109, 5856-5858.	6.6	728
3	Catalytic asymmetric induction. Highly enantioselective addition of dialkylzincs to aldehydes. Journal of the American Chemical Society, 1986, 108, 6071-6072.	6.6	552
4	Stereoselective Organic Synthesis via Dynamic Kinetic Resolution. Bulletin of the Chemical Society of Japan, 1995, 68, 36-55.	2.0	523
5	Homogeneous asymmetric hydrogenation of functionalized ketones. Journal of the American Chemical Society, 1988, 110, 629-631.	6.6	513
6	Asymmetric hydrogenation of unsaturated carboxylic acids catalyzed by BINAP-ruthenium(II) complexes. Journal of Organic Chemistry, 1987, 52, 3174-3176.	1.7	339
7	Asymmetric synthesis of isoquinoline alkaloids by homogeneous catalysis. Journal of the American Chemical Society, 1986, 108, 7117-7119.	6.6	282
8	Enantioselektive Addition von Organometallreagentien an Carbonylverbindungen: Übertragung, VervielfÃltigung und VerstÃrkung der ChiralitÃt. Angewandte Chemie, 1991, 103, 34-55.	1.6	276
9	Asymmetric Catalysis Special Feature Part I: Toward efficient asymmetric hydrogenation: Architectural and functional engineering of chiral molecular catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5356-5362.	3. 3	262
10	Quantitative Analysis of the Chiral Amplification in the Amino Alcohol-Promoted Asymmetric Alkylation of Aldehydes with Dialkylzincs. Journal of the American Chemical Society, 1998, 120, 9800-9809.	6.6	222
11	Enantioselective synthesis of î²-amino acids based on BINAP—ruthenium(II) catalyzed hydrogenation. Tetrahedron: Asymmetry, 1991, 2, 543-554.	1.8	188
12	Asymmetric Hydrogenation. , 2005, , 1-110.		146
13	General asymmetric synthesis of isoquinoline alkaloids. Enantioselective hydrogenation of enamides catalyzed by BINAP-ruthenium(II) complexes. Journal of Organic Chemistry, 1994, 59, 297-310.	1.7	136
14	Catalytic Dehydrative Allylation of Alcohols. Angewandte Chemie - International Edition, 2005, 44, 1730-1732.	7.2	124
15	Enantioselective Total Synthesis of (+)-Hinckdentine A via a Catalytic Dearomatization Approach. Journal of the American Chemical Society, 2016, 138, 14578-14581.	6.6	122
16	Asymmetric Dehydrative Cyclization of ωâ€Hydroxy Allyl Alcohols Catalyzed by Ruthenium Complexes. Angewandte Chemie - International Edition, 2009, 48, 8948-8951.	7.2	120
17	Mechanism of Asymmetric Hydrogenation of α-(Acylamino)acrylic Esters Catalyzed by BINAPâ^'Ruthenium(II) Diacetate. Journal of the American Chemical Society, 2002, 124, 6649-6667.	6.6	119
18	Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by Ru Complexes of Goodwinâ^²Lions-type sp2N/sp3N Hybrid Ligands R-BINAN-R'-Py. Journal of the American Chemical Society, 2006, 128, 8716-8717.	6.6	115

#	Article	lF	Citations
19	Catalytic Leuckartâ^'Wallach-Type Reductive Amination of Ketones. Journal of Organic Chemistry, 2002, 67, 8685-8687.	1.7	114
20	Recent topics in catalytic asymmetric hydrogenation of ketones. Tetrahedron Letters, 2014, 55, 3635-3640.	0.7	105
21	A Chiral Bidentate sp ² â€N Ligand, Naphâ€diPIM: Application to CpRuâ€Catalyzed Asymmetric Dehydrative Câ€, Nâ€, and Oâ€Allylation. Angewandte Chemie - International Edition, 2011, 50, 4649-4653.	7.2	90
22	CpRullPF6/Quinaldic Acid-Catalyzed Chemoselective Allyl Ether Cleavage. A Simple and Practical Method for Hydroxyl Deprotection. Organic Letters, 2004, 6, 1873-1875.	2.4	89
23	1,4-Addition of Diorganozincs $tol_{\pm}l_{\pm}^2$ -Unsaturated Ketones Catalyzed by a Copper(I)-Sulfonamide Combined System. Bulletin of the Chemical Society of Japan, 2000, 73, 999-1014.	2.0	79
24	Practical synthesis of BINAP-ruthenium(II) dicarboxylate complexes. Journal of Organic Chemistry, 1992, 57, 4053-4054.	1.7	71
25	Enantioselective Synthesis of Pyrrolidine-, Piperidine-, and Azepane-Type <i>N</i> -Heterocycles with î±-Alkenyl Substitution: The CpRu-Catalyzed Dehydrative Intramolecular <i>N</i> -Allylation Approach. Organic Letters, 2012, 14, 608-611.	2.4	68
26	[CpRu(IV)(Ï€-C3H5)(2-quinolinecarboxylato)]PF6 Complex: A Robust Catalyst for the Cleavage and Formation of Allyl Ethers. Advanced Synthesis and Catalysis, 2006, 348, 375-378.	2.1	61
27	Self and nonself recognition of chiral catalysts: The origin of nonlinear effects in the amino-alcohol catalyzed asymmetric addition of diorganozincs to aldehydes. Chemical Record, 2001, 1, 85-100.	2.9	57
28	Highly efficient catalytic dehydrative S-allylation of thiols and thioic S-acids. Chemical Communications, 2010, 46, 3996.	2.2	46
29	Stereochemistry of Aldols:Â Configuration and Conformation of Aldols Derived from Cycloalkanones and Aldehydes. Journal of the American Chemical Society, 2001, 123, 8939-8950.	6.6	45
30	Intramolecular Tsuji–Trost-type Allylation of Carboxylic Acids: Asymmetric Synthesis of Highly π-Allyl Donative Lactones. Journal of the American Chemical Society, 2015, 137, 9539-9542.	6.6	42
31	Asymmetric Hydrogenation of <i>tert</i> >â€Alkyl Ketones: DMSO Effect in Unification of Stereoisomeric Ruthenium Complexes. Angewandte Chemie - International Edition, 2013, 52, 9313-9315.	7.2	39
32	CpRu-catalyzed asymmetric dehydrative allylation. Pure and Applied Chemistry, 2013, 85, 1121-1132.	0.9	34
33	(P(C6H5)3)CpRu+-Catalyzed Deprotection of Allyl Carboxylic Esters. Journal of Organic Chemistry, 2002, 67, 4975-4977.	1.7	33
34	Mechanistic insight into NOYORI asymmetric hydrogenations. Chemical Communications, 2011, 47, 842-846.	2.2	32
35	Development of a Divergent Synthetic Route to the Erythrina Alkaloids: Asymmetric Syntheses of 8â€Oxoâ€erythrinine, Crystamidine, 8â€Oxoâ€erythraline, and Erythraline. Angewandte Chemie - International Edition, 2016, 55, 6915-6918.	7.2	31
36	A Magnetically Separable Heterogeneous Deallylation Catalyst: [CpRu(η ³ â€C ₃ H ₅)(2â€pyridinecarboxylato)]PF ₆ Complex Supported on a Ferromagnetic Microsize Particle Fe ₃ O ₄ @SiO ₂ . European Journal of Organic Chemistry, 2009, 2009, 789-792.	1.2	30

#	Article	IF	CITATIONS
37	Asymmetric Dehydrative C-, N-, and O-Allylation Using Naph-diPIM-dioxo-i-Pr-CpRu/p-TsOH Combined Catalyst. Synthesis, 2012, 44, 2138-2146.	1.2	29
38	Mechanism of Asymmetric Hydrogenation of Aromatic Ketones Catalyzed by a Combined System of Ru(Ï€-CH ₂ (CH ₃)CH ₂) ₂ (cod) and the Chiral sp ^{N/sp³NH Hybrid Linear N4 Ligand Ph-BINAN-H-Py. Journal of the American Chemical Society, 2015, 137, 8138-8149.}	6.6	29
39	Catalytic Removal of N-Allyloxycarbonyl Groups Using the [CpRu(IV)(Ï€-C3H5)(2-quinolinecarboxylato)]PF6 Complex. A New Efficient Deprotecting Method in Peptide Synthesis. Journal of Organic Chemistry, 2006, 71, 4682-4684.	1.7	26
40	Highly reactive and chemoselective cleavage of allyl esters using an air- and moisture-stable [CpRu(IV)(Ï€-C3H5)(2-quinolinecarboxylato)]PF6 catalyst. Journal of Organometallic Chemistry, 2007, 692, 295-298.	0.8	25
41	Revisiting the Cu ^{II} -Catalyzed Asymmetric Friedel–Crafts Reaction of Indole with Trifluoropyruvate. Organic Letters, 2018, 20, 7149-7153.	2.4	23
42	Dehydrative Allylation of Alcohols and Deallylation of Allyl Ethers Catalyzed by [CpRu(CH3CN)3]PF6 and 2-Pyridinecarboxylic Acid Derivatives. Effect of Ï∈-Accepting Ability and COOH Acidity of Ligand on Reactivity. Chemistry Letters, 2009, 38, 188-189.	0.7	22
43	1,4-Addition of Diethylzinc to Cyclohexenone Catalyzed by CuOTf-Sulfonamide Combined System. Evidence Supporting a Concerted Mechanism. Chemistry Letters, 2003, 32, 224-225.	0.7	21
44	Asymmetric NaBH ₄ 1,4â€Reduction of C3â€Disubstituted 2â€Propenoates Catalyzed by a Diamidine Cobalt Complex. ChemCatChem, 2015, 7, 1547-1550.	1.8	19
45	Origin of the Minor Enantiomeric Product in a Noyori Asymmetric Hydrogenation: Evidence for Pathways Different to the Major Mechanism. Angewandte Chemie - International Edition, 2005, 44, 7287-7290.	7.2	17
46	A new synthetic route to oligoribonucleotides based on CpRu-catalyzed deallylation. Tetrahedron Letters, 2007, 48, 7320-7322.	0.7	17
47	Synthetic Study toward Total Synthesis of (\hat{A}_{\pm}) -Germine: Synthesis of (\hat{A}_{\pm}) -4-Methylenegermine. Organic Letters, 2017, 19, 5150-5153.	2.4	16
48	Modular Construction of Protected $1,2/1,3$ -Diols, -Amino Alcohols, and -Diamines via Catalytic Asymmetric Dehydrative Allylation: An Application to Synthesis of Sphingosine. Journal of Organic Chemistry, 2017, 82, 9160-9170.	1.7	15
49	Synthesis of the core structure of phalarine. Organic and Biomolecular Chemistry, 2019, 17, 1727-1730.	1.5	15
50	CpRu/BrÃ, nsted Acid-Catalyzed Enantioselective Dehydrative Cyclization of Pyrroles N-Tethered with Allylic Alcohols. Organic Letters, 2020, 22, 1929-1933.	2.4	15
51	Synthesis and biological evaluation of chemokine receptor ligands with 2-benzazepine scaffold. European Journal of Medicinal Chemistry, 2017, 135, 401-413.	2.6	14
52	Desymmetric hydrogenation of a meso-cyclic acid anhydride toward biotin synthesis. Tetrahedron, 2011, 67, 10006-10010.	1.0	13
53	Synthesis of fluspidine via asymmetric NaBH4 reduction of silicon enolates of \hat{l}^2 -keto esters. Tetrahedron, 2018, 74, 5069-5084.	1.0	13
54	Enantio―and Diastereoselective Dehydrative "Oneâ€6tep―Construction of Spirocarbocycles via a Ru/H ⁺ â€Catalyzed Tsuji–Trost Approach. Chemistry - an Asian Journal, 2017, 12, 633-637.	1.7	12

#	Article	IF	Citations
55	Mechanism of catalytic asymmetric hydrogenation of 2-formyl-1-methylene-1,2,3,4-tetrahydroisoquinoline using Ru(CH3COO)2[(S)-binap]. Tetrahedron, 2006, 62, 5448-5453.	1.0	10
56	A New, Efficient and Direct Preparation of TITp and Related Complexes with TIBH ₄ . European Journal of Inorganic Chemistry, 2008, 2008, 1188-1192.	1.0	10
57	(9 <i>H</i> â€Fluorenâ€9â€yl)methanesulfonyl (Fms): An Amino Protecting Group Complementary to Fmoc. European Journal of Organic Chemistry, 2010, 2010, 4201-4204.	1.2	10
58	Catalytic DehydrativeS-Allylation of Cysteine-Containing Peptides in Aqueous Media toward Lipopeptide Chemistry. Journal of Organic Chemistry, 2011, 76, 1894-1897.	1.7	10
59	Soft ruthenium and hard Brønsted acid combined catalyst for efficient cleavage of allyloxy bonds. Application to protecting group chemistry. Tetrahedron, 2015, 71, 6559-6568.	1.0	10
60	Bisamidine–Cu(I)-catalyzed C-Allylation of 1,3-Dicarbonyl Compounds with Simple Cyclic Alkenes Using Di- <i>tert</i> -butyl Peroxide. Chemistry Letters, 2018, 47, 1486-1489.	0.7	10
61	Ligand Design for Catalytic Asymmetric Reduction. , 0, , 1-32.		9
62	Enantiomeric products formed via different mechanisms: asymmetric hydrogenation of an $\hat{l}_{\pm}, \hat{l}^{2}$ -unsaturated carboxylic acid involving a Ru(CH3COO)2[(R)-binap] catalyst. Tetrahedron, 2007, 63, 11399-11409.	1.0	9
63	Ï∈-Allyl Donicity Switch in Catalytic Asymmetric Allylation: Usability of a Robust and Feasible Allyl Methyl Ether. Chemistry Letters, 2017, 46, 1308-1310.	0.7	9
64	A Chiral Picolinic Acid Ligand, Cl-Naph-PyCOOH, for CpRu-Catalyzed Dehydrative Allylation: Design, Synthesis, and Properties. Bulletin of the Chemical Society of Japan, 2019, 92, 1707-1720.	2.0	9
65	Short and Atom-Economic Enantioselective Synthesis of the σ ₁ -Receptor Ligands (<i>S</i>)-and (<i>R</i>)-Fluspidine—Important Tools for Positron Emission Tomography Studies. Journal of Organic Chemistry, 2019, 84, 13744-13754.	1.7	9
66	Donor-Acceptor Bifunctional Molecular Catalyst: Its Development, Application, and Analysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 690-700.	0.0	9
67	Water, an Essential Element for a Zn II atalyzed Asymmetric Quinone Dielsâ€Alder Reaction: Multi‧elective Construction of Highly Functionalized cis â€Decalins. Chemistry - an Asian Journal, 2019, 14, 3283-3290.	1.7	8
68	Rapid Entry into Biologically Relevant α,α-Difluoroalkylphosphonates Bearing Allyl Protection–Deblocking under Ru(II)/(IV)-Catalysis. Organic Letters, 2019, 21, 9846-9851.	2.4	8
69	Development of an axially chiral sp3P/sp3NH/sp2N-combined linear tridentate ligandâ€"fac-selective formation of Ru(II) complexes and application to ketone hydrogenation. Tetrahedron, 2016, 72, 3781-3789.	1.0	7
70	Asymmetric Synthesis of Multiâ€substituted Prolines via a Catalytic 1,3â€Dipolar Cycloaddition Using a Monocationic Zn ^{II} OAc Complex of a Chiral Bisamidine Ligand, Naphâ€diPIMâ€dioxoâ€R. ChemCatChem, 2020, 12, 5613-5617.	1.8	7
71	Asymmetric Dehydrative Allylation Using Soft Ruthenium and Hard Brønsted Acid Combined Catalyst. Chemical Record, 2021, 21, 1385-1397.	2.9	7
72	Conformational Study on 2-Acyl-1-alkylidene-1,2,3,4-tetrahydroisoquinolines. Bulletin of the Chemical Society of Japan, 1996, 69, 1695-1700.	2.0	6

#	Article	IF	CITATIONS
73	Solid-phase synthesis of protected \hat{l}_{\pm} -amino phosphonic acid oligomers. Chemical Communications, 2009, , 6985.	2.2	6
74	Double Arylation of Acetylenedicarboxylate with B(C ₆ F ₅) ₃ . European Journal of Inorganic Chemistry, 2012, 2012, 1163-1166.	1.0	6
75	CpRuII-chiral bisamidine complex catalyzed asymmetric Carroll-type decarboxylative allylation of \hat{l}^2 -keto allyl esters. Tetrahedron, 2020, 76, 130888.	1.0	6
76	Mechanism Change of (+)-Nonlinear Effect in a Phase Separation System in a Cull-Catalyzed Asymmetric Friedel-Crafts Reaction Using a <i>C</i> 2-Chiral Dioxolane-Containing-Bisamidine Ligand, Naph-diPIM-dioxo- <i>i</i> Pr. Bulletin of the Chemical Society of Japan, 2020, 93, 1319-1333.	2.0	6
77	Development of a Divergent Synthetic Route to the Erythrina Alkaloids: Asymmetric Syntheses of 8â€Oxoâ€erythrinine, Crystamidine, 8â€Oxoâ€erythraline, and Erythraline. Angewandte Chemie, 2016, 128, 7029-7032.	1.6	5
78	Mechanistic Study of the Ru-Catalyzed Asymmetric Hydrogenation of Nonchelatable and Chelatable tert-Alkyl Ketones Using the Linear Tridentate sp3P/sp3NH/sp2N-Combined Ligand PN(H)N: RuNH- and RuNK-Involved Dual Catalytic Cycle. ACS Catalysis, 2018, 8, 11059-11075.	5.5	4
79	Solvent-free one-pot synthesis of thallium complexes of Tp [BH(Pz)3]â^' (Pz=pyrazolate) and its derivatives. Tetrahedron Letters, 2008, 49, 2990-2993.	0.7	3
80	Stereochemical Stability Differences between Axially Chiral 6-Aryl-Substituted Picolinic Esters and Their Benzoic Ester Derivatives: sp2N: vs. sp2CH in CH3, C6H5, and CH3O ortho-Substitution Effect. Bulletin of the Chemical Society of Japan, 2015, 88, 1726-1734.	2.0	2
81	A Monocationic Zn(II) Acetate Complex of a Chiral Bisamidine Dioxolane Ligand, Naph-diPIM-dioxo-R, for the Asymmetric 1,3-Dipolar Cycloaddition of Tridentate α-Substituted α-Imino Esters and Acrylates to Multi-Substituted Prolines: Importance of an n-π* Interaction for High Enantioselectivity. Bulletin of the Chemical Society of Iapan, 2021, 94, 295-308.	2.0	2
82	Effect of configuration of the branching terminal group on the stability of antiferroelectric liquid crystals. Ferroelectrics, 1996, 178, 287-296.	0.3	1
83	Structural Chemistry of Aldols. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 552-562.	0.0	1
84	Mechanism of the Asymmetric Dehydrative Allylative Cyclization of Alcohols to Cyclic Ethers Catalyzed by a CpRu Complex of the Chiral Picolinic Acid-Type Ligand, Cl-Naph-PyCOOH: Is a π-Allyl Intermediate Present?. Bulletin of the Chemical Society of Japan, 2021, 94, 440-450.	2.0	1
85	Ryoji Noyori: Pioneer of asymmetric molecular catalysis. Chirality, 2000, 12, 295-298.	1.3	0
86	Catalytic Dehydrative Allylation of Alcohols ChemInform, 2005, 36, no.	0.1	0
87	Donor-Acceptor Bifunctional Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1114-1117.	0.0	0
88	Reduction–Hydrogenation: C C; Chemoselective. , 2019, , .		0
89	Systematic asymmetric analog synthesis of fluspidine, a $lf1$ receptor ligand, to improve ligand affinity. Tetrahedron Letters, 2021, , 153250.	0.7	0