Ivo M Aroso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2654791/publications.pdf Version: 2024-02-01

IVO M APOSO

#	Article	IF	CITATIONS
1	Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry and Engineering, 2014, 2, 1063-1071.	6.7	1,598
2	Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 2016, 215, 534-540.	4.9	277
3	Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. Journal of Molecular Liquids, 2017, 241, 654-661.	4.9	194
4	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
5	Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology. International Journal of Pharmaceutics, 2015, 492, 73-79.	5.2	139
6	Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal, 2014, 253, 408-417.	12.7	121
7	Extraction of Collagen/Gelatin from the Marine Demosponge <i>Chondrosia reniformis</i> (Nardo,) Tj ETQq1 1 (Chemistry Research, 2016, 55, 6922-6930.).784314 3.7	rgBT /Overloo 59
8	Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites Part B: Engineering, 2014, 67, 371-380.	12.0	53
9	Cork: Current Technological Developments and Future Perspectives for this Natural, Renewable, and Sustainable Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 11130-11146.	6.7	53
10	Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chemistry and Engineering, 2015, 3, 254-260.	6.7	50
11	Enantiomeric electro-oxidation of d- and l-glucose on chiral gold single crystal surfaces. Electrochemistry Communications, 2003, 5, 741-746.	4.7	36
12	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	6.7	35
13	Enhanced performance of supercritical fluid foaming of naturalâ€based polymers by deep eutectic solvents. AICHE Journal, 2014, 60, 3701-3706.	3.6	29
14	Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): optimization of extraction conditions, chemical composition and antioxidant potential. Wood Science and Technology, 2017, 51, 855-872.	3.2	25
15	Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polymer Degradation and Stability, 2015, 116, 45-52.	5.8	18
16	<i>In vitro</i> bioactivity studies of ceramic structures isolated from marine sponges. Biomedical Materials (Bristol), 2016, 11, 045004.	3.3	16
17	Cork extracts reduce UV-mediated DNA fragmentation and cell death. RSC Advances, 2015, 5, 96151-96157.	3.6	13
18	Surface Modification of Silica-Based Marine Sponge Bioceramics Induce Hydroxyapatite Formation. Crystal Growth and Design, 2014, 14, 4545-4552.	3.0	12

Ivo M Aroso

#	Article	IF	CITATIONS
19	Cork processing with supercritical carbon dioxide: Impregnation and sorption studies. Journal of Supercritical Fluids, 2015, 104, 251-258.	3.2	10
20	Use of hemostatic agents for surgical bleeding in laparoscopic partial nephrectomy: Biomaterials perspective. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3099-3123.	3.4	10
21	A Fibrin Coating Method of Polypropylene Meshes Enables the Adhesion of Menstrual Blood-Derived Mesenchymal Stromal Cells: A New Delivery Strategy for Stem Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 13385.	4.1	7
22	Surface Functionalization of Ureteral Stents-Based Polyurethane: Engineering Antibacterial Coatings. Materials, 2022, 15, 1676.	2.9	7
23	Isolation of Friedelin from Black Condensate of Cork. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	6
24	Comparing deep eutectic solvents and cyclodextrin complexes as curcumin vehicles for blue-light antimicrobial photodynamic therapy approaches. Photochemical and Photobiological Sciences, 2022, , 1.	2.9	1