Tomoya Nakagita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2654443/publications.pdf

Version: 2024-02-01

933447 940533 16 593 10 16 citations h-index g-index papers 16 16 16 814 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science, 2014, 345, 929-933.	12.6	169
2	Two Distinct Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor). Journal of Biological Chemistry, 2013, 288, 36863-36877.	3.4	101
3	Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nature Chemical Biology, 2019, 15, 18-26.	8.0	85
4	l-Theanine elicits umami taste via the T1R1Â+ÂT1R3 umami taste receptor. Amino Acids, 2014, 46, 1583-1587.	2.7	45
5	Early origin of sweet perception in the songbird radiation. Science, 2021, 373, 226-231.	12.6	34
6	Sweeteners interacting with the transmembrane domain of the human sweet-taste receptor induce sweet-taste synergisms in binary mixtures. Food Chemistry, 2012, 130, 561-568.	8.2	33
7	Positive/Negative Allosteric Modulation Switching in an Umami Taste Receptor (T1R1/T1R3) by a Natural Flavor Compound, Methional. Scientific Reports, 2018, 8, 11796.	3.3	32
8	Evolution of the primate glutamate taste sensor from a nucleotide sensor. Current Biology, 2021, 31, 4641-4649.e5.	3.9	28
9	Structural insights into the differences among lactisole derivatives in inhibitory mechanisms against the human sweet taste receptor. PLoS ONE, 2019, 14, e0213552.	2.5	18
10	CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Science Alliance, 2021, 4, e202101095.	2.8	12
11	Ibuprofen, a Nonsteroidal Anti-Inflammatory Drug, is a Potent Inhibitor of the Human Sweet Taste Receptor. Chemical Senses, 2020, 45, 667-673.	2.0	9
12	Recent progress in the use of diaziridine-based sweetener derivatives to elucidate the chemoreception mechanism of the sweet taste receptor. RSC Advances, 2021, 11, 32236-32247.	3.6	7
13	Synergism, Bifunctionality, and the Evolution of a Gradual Sensory Trade-off in Hummingbird Taste Receptors. Molecular Biology and Evolution, 2022, 39, .	8.9	7
14	Ibuprofen inhibits oral NaCl response through transmembrane channel-like 4. Biochemical and Biophysical Research Communications, 2021, 573, 76-79.	2.1	6
15	Vibrational analysis of acetylcholine binding to the M ₂ receptor. RSC Advances, 2021, 11, 12559-12567.	3.6	4
16	Asymmetric Synthesis of Photophore-Containing Lactisole Derivatives to Elucidate Sweet Taste Receptors. Molecules, 2020, 25, 2790.	3.8	3