Andreas H Farnleitner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2654304/publications.pdf

Version: 2024-02-01

109 papers 4,257 citations

34 h-index 59 g-index

113 all docs

 $\begin{array}{c} 113 \\ \text{docs citations} \end{array}$

113 times ranked 4899 citing authors

#	Article	IF	CITATIONS
1	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	3.9	153
2	From Groundwater to Drinking Water—Microbiology of Karstic Water Resources. , 2022, , .		0
3	From Groundwater to Drinking Water – Current Approaches for Microbial Monitoring and Risk Assessment in Porous Aquifers. , 2022, , .		O
4	How dead is dead? Viable but nonâ€culturable versus persister cells. Environmental Microbiology Reports, 2021, 13, 243-245.	1.0	12
5	Microbial faecal pollution of river water in a watershed of tropical Ethiopian highlands is driven by diffuse pollution sources. Journal of Water and Health, 2021, 19, 575-591.	1.1	6
6	Bacteriophages Are Good Estimators of Human Viruses Present in Water. Frontiers in Microbiology, 2021, 12, 619495.	1.5	19
7	Modelling the interplay of future changes and wastewater management measures on the microbiological river water quality considering safe drinking water production. Science of the Total Environment, 2021, 768, 144278.	3.9	22
8	Genetic Microbial Source Tracking Support QMRA Modeling for a Riverine Wetland Drinking Water Resource. Frontiers in Microbiology, 2021, 12, 668778.	1.5	7
9	Upscaling Transport of <i>Bacillus subtilis</i> Endospores and Coliphage phiX174 in Heterogeneous Porous Media from the Column to the Field Scale. Environmental Science & Env	4.6	15
10	Detection of SARS-CoV-2 RNA in the Danube River in Serbia associated with the discharge of untreated wastewaters. Science of the Total Environment, 2021, 783, 146967.	3.9	29
11	Assessing biological stability in aÂporous groundwater aquifer of aÂriverbank filtration system: combining traditional cultivation-based and emerging cultivation-independent in situ and predictive methods. Osterreichische Wasser- Und Abfallwirtschaft, 2021, 73, 490-500.	0.3	0
12	Using hydrodynamic and hydraulic modelling to study microbiological water quality issues at aÂbackwater area of the Danube to support decision-making. Osterreichische Wasser- Und Abfallwirtschaft, 2021, 73, 482-489.	0.3	1
13	Genetic microbial faecal source tracking: rising technology to support future water quality testing and safety management. Osterreichische Wasser- Und Abfallwirtschaft, 2021, 73, 468-481.	0.3	8
14	Vertebrate host phylogeny influences gut archaeal diversity. Nature Microbiology, 2021, 6, 1443-1454.	5.9	34
15	Identifying Inorganic Turbidity in Water Samples as Potential Loss Factor During Nucleic Acid Extraction: Implications for Molecular Fecal Pollution Diagnostics and Source Tracking. Frontiers in Microbiology, 2021, 12, 660566.	1.5	9
16	The intriguing new possibilities of the microbiological methodology and molecular diagnostics for water quality analysis. Osterreichische Wasser- Und Abfallwirtschaft, 2021, 73, 446.	0.3	0
17	Macroinvertebrate indices versus microbial fecal pollution characteristics for water quality monitoring reveals contrasting results for an Ethiopian river. Ecological Indicators, 2020, 108, 105733.	2.6	18
18	Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. Water Research, 2020, 171, 115392.	5.3	24

#	Article	IF	Citations
19	Large-Scale Metagenome Assembly Reveals Novel Animal-Associated Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic Diversity. MSystems, 2020, 5, .	1.7	47
20	Evaluation of groundwater bacterial community composition to inform waterborne pathogen vulnerability assessments. Science of the Total Environment, 2020, 743, 140472.	3.9	10
21	Elucidating fecal pollution patterns in alluvial water resources by linking standard fecal indicator bacteria to river connectivity and genetic microbial source tracking. Water Research, 2020, 184, 116132.	5.3	19
22	Automated online monitoring of fecal pollution in water by enzymatic methods. Current Opinion in Environmental Science and Health, 2020, 16, 82-91.	2.1	9
23	Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated From a Large Austrian Lake Frequently Associated With Cases of Human Infection. Frontiers in Microbiology, 2019, 10, 2600.	1.5	27
24	Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Scientific Reports, 2019, 9, 13994.	1.6	31
25	Detection of a microbial source tracking marker by isothermal helicase-dependent amplification and a nucleic acid lateral-flow strip test. Scientific Reports, 2019, 9, 393.	1.6	27
26	Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nature Communications, 2019, 10, 2200.	5.8	317
27	Event-transport of beta-d-glucuronidase in an agricultural headwater stream: Assessment of seasonal patterns by on-line enzymatic activity measurements and environmental isotopes. Science of the Total Environment, 2019, 662, 236-245.	3.9	7
28	Spring Water of an Alpine Karst Aquifer Is Dominated by a Taxonomically Stable but Discharge-Responsive Bacterial Community. Frontiers in Microbiology, 2019, 10, 28.	1.5	23
29	Microbiological Water Quality of Rivers in Montenegro. Handbook of Environmental Chemistry, 2019, , 135-155.	0.2	2
30	Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Science of the Total Environment, 2019, 649, 212-223.	3.9	30
31	Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 1695-1702.	1.9	45
32	Spatial patterns of enzymatic activity in large water bodies: Ship-borne measurements of beta-D-glucuronidase activity as a rapid indicator of microbial water quality. Science of the Total Environment, 2019, 651, 1742-1752.	3.9	10
33	Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1282.	2.8	28
34	Spatiotemporal Dynamics of Vibrio cholerae in Turbid Alkaline Lakes as Determined by Quantitative PCR. Applied and Environmental Microbiology, 2018, 84, .	1.4	23
35	Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system. Science of the Total Environment, 2018, 627, 450-461.	3.9	36
36	Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents. Environmental Science & Environmental Science	4.6	73

#	Article	IF	CITATIONS
37	Integrated Strategy to Guide Health-Related Microbial Quality Management at Alpine Karstic Drinking Water Resources. Advances in Karst Science, 2018, , 185-192.	0.3	3
38	Antibiotic Resistance of Acinetobacter spp. Isolates from the River Danube: Susceptibility Stays High. International Journal of Environmental Research and Public Health, 2018, 15, 52.	1.2	29
39	Hotspots and main drivers of fecal pollution in Neusiedler See, a large shallow lake in Central Europe. Environmental Science and Pollution Research, 2018, 25, 28884-28898.	2.7	18
40	Poikilothermic Animals as a Previously Unrecognized Source of Fecal Indicator Bacteria in a Backwater Ecosystem of a Large River. Applied and Environmental Microbiology, 2018, 84, .	1.4	17
41	The microbiological water quality of Vienna's River Danube section and its associated water bodies. Osterreichische Wasser- Und Abfallwirtschaft, 2017, 69, 76-88.	0.3	2
42	A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Enterococcus spp. in water. Water Research, 2017, 122, 62-69.	5.3	60
43	A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters. Environmental Science & Envi	4.6	12
44	Development and evaluation of a self-cleaning custom-built auto sampler controlled by a low-cost RaspberryPi microcomputer for online enzymatic activity measurements. Talanta, 2017, 162, 390-397.	2.9	8
45	High genetic diversity ofVibrio choleraein the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the longâ€distance transfer of strains. Environmental Microbiology, 2017, 19, 328-344.	1.8	41
46	Does Pumping Volume Affect the Concentration of Micropollutants in Groundwater Samples?. Ground Water Monitoring and Remediation, 2017, 37, 82-88.	0.6	7
47	Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube. Frontiers in Microbiology, 2016, 7, 586.	1.5	72
48	QMRAcatch: Humanâ€Associated Fecal Pollution and Infection Risk Modeling for a River/Floodplain Environment. Journal of Environmental Quality, 2016, 45, 1205-1214.	1.0	24
49	Determination of the sources of nitrate and the microbiological sources of pollution in the Sava River Basin. Science of the Total Environment, 2016, 573, 1460-1471.	3.9	56
50	Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: A comparison of prototypes. Water Research, 2016, 101, 252-261.	5.3	25
51	Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. Water Research, 2016, 90, 265-276.	5.3	59
52	A rapid genomic DNA extraction method and its combination with helicase dependent amplification for the detection of genetically modified maize. Analytical Methods, 2016, 8, 136-141.	1.3	13
53	Evaluation of Genotoxic Pressure along the Sava River. PLoS ONE, 2016, 11, e0162450.	1.1	25
54	Enterobacteriaceae Isolated from the River Danube: Antibiotic Resistances, with a Focus on the Presence of ESBL and Carbapenemases. PLoS ONE, 2016, 11, e0165820.	1.1	77

#	Article	IF	CITATIONS
55	Bacterial diversity along a 2600 km river continuum. Environmental Microbiology, 2015, 17, 4994-5007.	1.8	265
56	Attachment and Detachment Behavior of Human Adenovirus and Surrogates in Fine Granular Limestone Aquifer Material. Journal of Environmental Quality, 2015, 44, 1392-1401.	1.0	21
57	Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring. Water Science and Technology, 2015, 72, 1962-1972.	1.2	53
58	QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment. Journal of Environmental Quality, 2015, 44, 1491-1502.	1.0	44
59	Dynamics of V ibrio cholerae abundance in A ustrian saline lakes, assessed with quantitative solidâ€phase cytometry. Environmental Microbiology, 2015, 17, 4366-4378.	1.8	19
60	Loop-Mediated Isothermal Amplification (LAMP) for the Detection of Horse Meat in Meat and Processed Meat Products. Food Analytical Methods, 2015, 8, 1576-1581.	1.3	35
61	A Novel Triplex Quantitative PCR Strategy for Quantification of Toxigenic and Nontoxigenic Vibrio cholerae in Aquatic Environments. Applied and Environmental Microbiology, 2015, 81, 3077-3085.	1.4	19
62	Preliminary Toxicological Evaluation of the River Danube Using in Vitro Bioassays. Water (Switzerland), 2015, 7, 1959-1968.	1.2	9
63	Automated Sampling Procedures Supported by High Persistence of Bacterial Fecal Indicators and Bacteroidetes Genetic Microbial Source Tracking Markers in Municipal Wastewater during Short-Term Storage at 5°C. Applied and Environmental Microbiology, 2015, 81, 5134-5143.	1.4	18
64	The development of a multiplex real-time PCR to quantify Fusarium DNA of trichothecene and fumonisin producing strains in maize. Analytical Methods, 2015, 7, 1358-1365.	1.3	14
65	Response to Letter to the Editor regarding "Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach― Analytical and Bioanalytical Chemistry, 2014, 406, 8061-8062.	1.9	2
66	Microbiological Water Quality of the Danube River: Status Quo and Future Perspectives. Handbook of Environmental Chemistry, 2014, , 439-468.	0.2	6
67	Enumerating Microorganism Surrogates for Groundwater Transport Studies Using Solid-Phase Cytometry. Water, Air, and Soil Pollution, 2014, 225, 1827.	1.1	6
68	Detection of the food allergen celery via loop-mediated isothermal amplification technique. Analytical and Bioanalytical Chemistry, 2014, 406, 6827-6833.	1.9	18
69	Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach. Analytical and Bioanalytical Chemistry, 2014, 406, 6835-6842.	1.9	25
70	Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers – Is it feasible?. Water Research, 2013, 47, 6849-6861.	5.3	39
71	Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources. Water Research, 2013, 47, 6921-6928.	5.3	45
72	Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research, 2013, 47, 6897-6908.	5.3	117

#	Article	IF	Citations
73	Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated <i>i>Bacteroidetes i>for Microbial Source Tracking across Sixteen Countries on Six Continents</i> . Environmental Science & Environmental Scie	4.6	111
74	Clostridium perfringens Is Not Suitable for the Indication of Fecal Pollution from Ruminant Wildlife but Is Associated with Excreta from Nonherbivorous Animals and Human Sewage. Applied and Environmental Microbiology, 2013, 79, 5089-5092.	1.4	40
75	Dynamics of natural prokaryotes, viruses, and heterotrophic nanoflagellates in alpine karstic groundwater. MicrobiologyOpen, 2013, 2, 633-643.	1.2	22
76	Holy springs and holy water: underestimated sources of illness?. Journal of Water and Health, 2012, 10, 349-357.	1.1	15
77	Sanitary inspection of wells using risk-of-contamination scoring indicates a high predictive ability for bacterial faecal pollution in the peri-urban tropical lowlands of Dar es Salaam, Tanzania. Journal of Water and Health, 2012, 10, 236-243.	1.1	29
78	Rapid and Sensitive Quantification of Vibrio cholerae and Vibrio mimicus Cells in Water Samples by Use of Catalyzed Reporter Deposition Fluorescenceln SituHybridization Combined with Solid-Phase Cytometry. Applied and Environmental Microbiology, 2012, 78, 7369-7375.	1.4	29
79	High abundance of genetic Bacteroidetes markers for total fecal pollution in pristine alpine soils suggests lack in specificity for feces. Journal of Microbiological Methods, 2012, 88, 433-435.	0.7	28
80	Hypothesis-Driven Approach for the Identification of Fecal Pollution Sources in Water Resources. Environmental Science & Envir	4.6	57
81	Development of the Bacterial Compartment Along the Danube River: a Continuum Despite Local Influences. Microbial Ecology, 2011, 61, 955-967.	1.4	24
82	Applicability of solid-phase cytometry and epifluorescence microscopy for rapid assessment of the microbiological quality of dialysis water. Nephrology Dialysis Transplantation, 2011, 26, 3640-3645.	0.4	17
83	Agricultural and Rural Watersheds. , 2011, , 399-431.		9
84	Library-Independent Bacterial Source Tracking Methods. , 2011, , 61-112.		25
85	Comment on "Non-permanent shallow halocline in a fractured carbonate aquifer, southern Italy―by E. Petrella, G. Naclerio, A. Falasca, A. Bucci, P. Capuano, V. De Felice and F. Celico [J. Hydrol. 373 (2009) 267–272]. Journal of Hydrology, 2010, 391, 387-388.	2.3	1
86	Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal pollution in alpine mountainous water resources. Journal of Applied Microbiology, 2010, 109, no-no.	1.4	64
87	Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands. Journal of Water and Health, 2010, 8, 466-478.	1.1	14
88	A pilot study on anthropogenic faecal pollution impact in Bahir Dar Gulf of Lake Tana, Northern Ethiopia. Ecohydrology and Hydrobiology, 2010, 10, 271-279.	1.0	15
89	Use of faecal pollution indicators to estimate pathogen die off conditions in source separated faeces in Kathmandu Valley, Nepal. Journal of Water and Health, 2009, 7, 97-107.	1.1	12
90	Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications. FEMS Microbiology Ecology, 2009, 68, 287-299.	1.3	55

#	Article	IF	CITATIONS
91	Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water Research, 2009, 43, 3673-3684.	5.3	79
92	Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environmental Microbiology, 2008, 10, 2598-2608.	1.8	99
93	Rapid Growth of Planktonic <i>Vibrio cholerae</i> Non-O1/Non-O139 Strains in a Large Alkaline Lake in Austria: Dependence on Temperature and Dissolved Organic Carbon Quality. Applied and Environmental Microbiology, 2008, 74, 2004-2015.	1.4	69
94	Longitudinal Changes in the Bacterial Community Composition of the Danube River: a Whole-River Approach. Applied and Environmental Microbiology, 2007, 73, 421-431.	1.4	110
95	A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Letters in Applied Microbiology, 2007, 44, 351-356.	1.0	114
96	Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment. Journal of Microbiological Methods, 2006, 66, 147-155.	0.7	77
97	Quantitative PCR Method for Sensitive Detection of Ruminant Fecal Pollution in Freshwater and Evaluation of This Method in Alpine Karstic Regions. Applied and Environmental Microbiology, 2006, 72, 5610-5614.	1.4	163
98	Contrasting occurrence of Chromobacterium violaceum in tropical drinking water springs of Uganda. Journal of Water and Health, 2005, 3, 229-238.	1.1	15
99	Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environmental Microbiology, 2005, 7, 1248-1259.	1.8	126
100	Discrimination Efficacy of Fecal Pollution Detection in Different Aquatic Habitats of a High-Altitude Tropical Country, Using Presumptive Coliforms, Escherichia coli, and Clostridium perfringens Spores. Applied and Environmental Microbiology, 2005, 71, 65-71.	1.4	62
101	Prevalence of botulinum neurotoxin C1 and its corresponding gene in environmental samples from low and high risk avian botulism areas. ALTEX: Alternatives To Animal Experimentation, 2005, 22, 185-95.	0.9	8
102	Integral Strategy for Evaluation of Fecal Indicator Performance in Bird-Influenced Saline Inland Waters. Applied and Environmental Microbiology, 2004, 70, 7396-7403.	1.4	41
103	Eubacterial 16S-rDNA amplicon profiling: a rapid technique for comparison and differentiation of heterotrophic plate count communities from drinking water. International Journal of Food Microbiology, 2004, 92, 333-345.	2.1	21
104	Specific detection of Fusarium langsethiae and related species by DGGE and ARMS-PCR of a \hat{l}^2 -tubulin (tub1) gene fragment. International Journal of Food Microbiology, 2004, 95, 333-339.	2.1	20
105	Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe. Journal of Microbiological Methods, 2004, 59, 141-146.	0.7	81
106	The Choice of Standardisation Reveals a Significant Influence on the Dynamics of Bacterial Abundance in Newly Deposited River Sediments. International Review of Hydrobiology, 2003, 88, 284-289.	0.5	3
107	Application of single-strand conformation polymorphism and denaturing gradient gel electrophoresis for fla sequence typing of Campylobacter jejuni. Journal of Microbiological Methods, 2003, 52, 305-313.	0.7	16
108	Simultaneous Detection and Differentiation of Escherichia coli Populations from Environmental Freshwaters by Means of Sequence Variations in a Fragment of the \hat{I}^2 - d-Glucuronidase Gene. Applied and Environmental Microbiology, 2000, 66, 1340-1346.	1.4	63

#	Article	IF	CITATIONS
109	Determination of Escherichia coli Contamination with Chromocult Coliform Agar Showed a High Level of Discrimination Efficiency for Differing Fecal Pollution Levels in Tropical Waters of Kampala, Uganda. Applied and Environmental Microbiology, 2000, 66, 864-868.	1.4	90