Vincenzo Baglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2653898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001, 145, 101-107.	1.3	276
2	Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature. Electrochemical and Solid-State Letters, 2001, 4, A31.	2.2	268
3	Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Applied Catalysis B: Environmental, 2015, 164, 488-495.	10.8	213
4	Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochimica Acta, 2005, 50, 1241-1246.	2.6	212
5	Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. Journal of Applied Electrochemistry, 2013, 43, 107-118.	1.5	198
6	Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics, 2003, 161, 251-265.	1.3	164
7	Effect of Ptî—,Ru alloy composition on high-temperature methanol electro-oxidation. Electrochimica Acta, 2002, 47, 3723-3732.	2.6	159
8	Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. International Journal of Hydrogen Energy, 2010, 35, 5558-5568.	3.8	138
9	Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer. Applied Energy, 2017, 192, 477-489.	5.1	138
10	Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochimica Acta, 2009, 54, 6292-6299.	2.6	131
11	Investigation of direct methanol fuel cells based on unsupported Pt–Ru anode catalysts with different chemical properties. Electrochimica Acta, 2000, 45, 4319-4328.	2.6	125
12	An electrochemical study of a PEM stack for water electrolysis. International Journal of Hydrogen Energy, 2012, 37, 1939-1946.	3.8	120
13	Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2013, 243, 519-534.	4.0	118
14	Analysis of the high-temperature methanol oxidation behaviour at carbon-supported Pt–Ru catalysts. Journal of Electroanalytical Chemistry, 2003, 557, 167-176.	1.9	117
15	Influence of flow field design on the performance of a direct methanol fuel cell. Journal of Power Sources, 2000, 91, 202-209.	4.0	115
16	Performance analysis of a non-platinum group metal catalyst based on iron-aminoantipyrine for direct methanol fuel cells. Applied Catalysis B: Environmental, 2016, 182, 297-305.	10.8	113
17	Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy, 2017, 34, 195-204.	8.2	113
18	New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis. Nano Energy, 2017, 40, 618-632.	8.2	112

#	Article	IF	CITATIONS
19	Preparation and evaluation of RuO2–IrO2, IrO2–Pt and IrO2–Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer. Journal of Applied Electrochemistry, 2009, 39, 191-196.	1.5	111
20	The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. Journal of Power Sources, 2017, 366, 105-114.	4.0	110
21	Enhanced oxygen reduction activity and durability of Pt catalysts supported on carbon nanofibers. Applied Catalysis B: Environmental, 2012, 115-116, 269-275.	10.8	109
22	Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. Journal of Power Sources, 2008, 179, 34-41.	4.0	104
23	High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser. Electrochimica Acta, 2008, 53, 7350-7356.	2.6	101
24	High Performance and Costâ€Effective Direct Methanol Fuel Cells: Feâ€N Methanolâ€Tolerant Oxygen Reduction Reaction Catalysts. ChemSusChem, 2016, 9, 1986-1995.	3.6	100
25	FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes. Electrochemistry Communications, 2003, 5, 862-866.	2.3	93
26	Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer. Journal of Nanoparticle Research, 2011, 13, 1639-1646.	0.8	93
27	Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials, 2018, 11, 1368.	1.3	88
28	Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy, 2011, 36, 7822-7831.	3.8	85
29	Sulfonated Graphene Oxide Platelets in Nafion Nanocomposite Membrane: Advantages for Application in Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 24357-24368.	1.5	85
30	Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells. Journal of Power Sources, 2003, 123, 107-115.	4.0	84
31	Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells. Journal of Power Sources, 2016, 319, 235-246.	4.0	83
32	Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide. Applied Catalysis B: Environmental, 2014, 144, 554-560.	10.8	80
33	Towards fuel cell membranes with improved lifetime: Aquivion® Perfluorosulfonic Acid membranes containing immobilized radical scavengers. Journal of Power Sources, 2014, 272, 753-758.	4.0	80
34	Degradation issues of PEM electrolysis MEAs. Renewable Energy, 2018, 123, 52-57.	4.3	80
35	Performance of DMFC anodes with ultra-low Pt loading. Electrochemistry Communications, 2004, 6, 164-169.	2.3	79
36	Optimization of components and assembling in a PEM electrolyzer stack. International Journal of Hydrogen Energy, 2011, 36, 3333-3339.	3.8	79

#	Article	IF	CITATIONS
37	Investigation of bimetallic Pt–M/C as DMFC cathode catalysts. Electrochimica Acta, 2007, 53, 1360-1364.	2.6	77
38	Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis. Journal of Membrane Science, 2014, 466, 1-7.	4.1	77
39	Composite Mesoporous Titania Nafion-Based Membranes for Direct Methanol Fuel Cell Operation at High Temperature. Journal of the Electrochemical Society, 2005, 152, A1373.	1.3	71
40	Solid Polymer Electrolyte Water Electrolyser Based on Nafionâ€īiO ₂ Composite Membrane for High Temperature Operation. Fuel Cells, 2009, 9, 247-252.	1.5	71
41	Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells. International Journal of Hydrogen Energy, 2012, 37, 5508-5517.	3.8	71
42	Fe–N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells. Applied Catalysis B: Environmental, 2015, 166-167, 75-83.	10.8	69
43	PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. International Journal of Hydrogen Energy, 2017, 42, 27919-27928.	3.8	66
44	Carbon nanofiber-based counter electrodes for low cost dye-sensitized solar cells. Journal of Power Sources, 2014, 250, 242-249.	4.0	65
45	Selectivity of Direct Methanol Fuel Cell Membranes. Membranes, 2015, 5, 793-809.	1.4	65
46	Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt–M supported catalysts. Journal of Applied Electrochemistry, 2006, 36, 1143-1149.	1.5	61
47	Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction. Electrochimica Acta, 2013, 94, 80-91.	2.6	61
48	A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes. Journal of Power Sources, 2017, 364, 101-109.	4.0	60
49	Optimization of properties and operating parameters of a passive DMFC mini-stack at ambient temperature. Journal of Power Sources, 2008, 180, 797-802.	4.0	59
50	Propane reforming on Ni–Ru/GDC catalyst: H2 production for IT-SOFCs under SR and ATR conditions. Applied Catalysis A: General, 2008, 334, 1-9.	2.2	59
51	An NMR and SAXS investigation of DMFC composite recast Nafion membranes containing ceramic fillers. Journal of Membrane Science, 2006, 270, 221-227.	4.1	58
52	Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. Journal of Membrane Science, 2013, 448, 209-214.	4.1	58
53	Zeolite-based composite membranes for high temperature direct methanol fuel cells. Journal of Applied Electrochemistry, 2005, 35, 207-212.	1.5	57
54	Development of Pt and Pt–Fe Catalysts Supported on Multiwalled Carbon Nanotubes for Oxygen Reduction in Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B829.	1.3	56

#	Article	IF	CITATIONS
55	Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 2173-2179.	1.5	56
56	Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. Desalination, 2006, 199, 283-285.	4.0	55
57	Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production. Energies, 2016, 9, 1008.	1.6	54
58	Surface properties of inorganic fillers for application in composite membranes-direct methanol fuel cells. Journal of Power Sources, 2004, 128, 113-118.	4.0	53
59	Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochimica Acta, 2012, 70, 255-265.	2.6	53
60	The effect of thermal treatment on structure and surface composition of PtCo electro-catalysts for application in PEMFCs operating under automotive conditions. Journal of Power Sources, 2012, 208, 35-45.	4.0	52
61	Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite-based composite membranes. Electrochimica Acta, 2005, 50, 5181-5188.	2.6	50
62	Investigation of passive DMFC mini-stacks at ambient temperature. Electrochimica Acta, 2009, 54, 2004-2009.	2.6	50
63	Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2014, 147, 947-957.	10.8	48
64	Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications. Journal of Power Sources, 2019, 437, 226948.	4.0	48
65	CO 2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials. Electrochimica Acta, 2017, 241, 28-40.	2.6	46
66	Electrospun carbon nanofibers loaded with spinel-type cobalt oxide as bifunctional catalysts for enhanced oxygen electrocatalysis. Journal of Energy Storage, 2019, 23, 269-277.	3.9	46
67	Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Applied Catalysis B: Environmental, 2013, 132-133, 22-27.	10.8	45
68	Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells. Desalination, 2006, 199, 271-273.	4.0	44
69	Investigation of Pt–Fe catalysts for oxygen reduction in low temperature direct methanol fuel cells. Journal of Power Sources, 2006, 159, 900-904.	4.0	44
70	Immobilized transition metal-based radical scavengers and their effect on durability of Aquivion® perfluorosulfonic acid membranes. Journal of Power Sources, 2016, 301, 317-325.	4.0	44
71	A Rechargeable, Aqueous Iron Air Battery with Nanostructured Electrodes Capable of High Energy Density Operation. Journal of the Electrochemical Society, 2017, 164, A1148-A1157.	1.3	43
72	Investigation of Pt–Ru nanoparticle catalysts for low temperature methanol electro-oxidation. Journal of Solid State Electrochemistry, 2007, 11, 1229-1238.	1.2	42

#	Article	IF	CITATIONS
73	Performance analysis of Fe–N–C catalyst for DMFC cathodes: Effect of water saturation in the cathodic catalyst layer. International Journal of Hydrogen Energy, 2016, 41, 22605-22618.	3.8	42
74	A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries. Electrochimica Acta, 2015, 174, 508-515.	2.6	41
75	Investigation of carbon-supported Pt and PtCo catalysts for oxygen reduction in direct methanol fuel cells. Electrochimica Acta, 2009, 54, 4844-4850.	2.6	40
76	Performance of a PEM water electrolyser combining an IrRu-oxide anode electrocatalyst and a short-side chain Aquivion membrane. International Journal of Hydrogen Energy, 2015, 40, 14430-14435.	3.8	40
77	Carbon-supported Pd and Pd-Co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration. Journal of Electroanalytical Chemistry, 2018, 808, 464-473.	1.9	40
78	Investigation of the activity and stability of Pd-based catalysts towards the oxygen reduction (ORR) and evolution reactions (OER) in iron–air batteries. RSC Advances, 2015, 5, 25424-25427.	1.7	39
79	Simple and functional direct methanol fuel cell stack designs for application in portable and auxiliary power units. International Journal of Hydrogen Energy, 2016, 41, 12320-12329.	3.8	39
80	Sulfonated polyethersulfone/polyetheretherketone blend as high performing and cost-effective electrolyte membrane for direct methanol fuel cells. Renewable Energy, 2020, 159, 336-345.	4.3	38
81	Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 2018, 808, 412-419.	1.9	37
82	NiCo-loaded carbon nanofibers obtained by electrospinning: Bifunctional behavior as air electrodes. Renewable Energy, 2018, 125, 250-259.	4.3	36
83	Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. Catalysts, 2018, 8, 650.	1.6	36
84	EDTA-derived Co N C and Fe N C electro-catalysts for the oxygen reduction reaction in acid environment. Renewable Energy, 2018, 120, 342-349.	4.3	35
85	Barrier properties of sulfonated polysulfone/layered double hydroxides nanocomposite membrane for direct methanol fuel cell operating at high methanol concentrations. International Journal of Hydrogen Energy, 2020, 45, 20647-20658.	3.8	35
86	An NMR spectroscopic study of water and methanol transport properties in DMFC composite membranes: Influence on the electrochemical behaviour. Journal of Power Sources, 2006, 163, 52-55.	4.0	34
87	The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 6253-6260.	3.8	33
88	Towards new generation fuel cell electrocatalysts based on xerogel–nanofiber carbon composites. Journal of Materials Chemistry A, 2014, 2, 13713.	5.2	33
89	Oxidized carbon nanofibers supporting PtRu nanoparticles for direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5414-5423.	3.8	33
90	Advances in hybrid composite membranes engineering for high-performance direct methanol fuel cells by alignment of 2D nanostructures and a dual-layer approach. Journal of Membrane Science, 2020, 599, 117858.	4.1	33

6

#	Article	IF	CITATIONS
91	Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells. Solid State Ionics, 2012, 216, 90-94.	1.3	32
92	Preparation and characterisation of Ti oxide based catalyst supports for low temperature fuel cells. International Journal of Hydrogen Energy, 2013, 38, 11600-11608.	3.8	32
93	Synthesis of Pd ₃ Co ₁ @Pt/C Coreâ€6hell Catalysts for Methanolâ€Tolerant Cathodes of Direct Methanol Fuel Cells. Chemistry - A European Journal, 2014, 20, 10679-10684.	1.7	32
94	Pt–Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells. Journal of Solid State Electrochemistry, 2008, 12, 643-649.	1.2	31
95	Endurance study of a solid polymer electrolyte direct ethanol fuel cell based on a Pt–Sn anode catalyst. International Journal of Hydrogen Energy, 2013, 38, 11576-11582.	3.8	31
96	Enhancing ethanol oxidation rate at PtRu electro-catalysts using metal-oxide additives. Electrochimica Acta, 2016, 191, 183-191.	2.6	31
97	N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen. Materials, 2017, 10, 1092.	1.3	31
98	Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells. Applied Catalysis B: Environmental, 2013, 142-143, 15-24.	10.8	30
99	Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance. Materials, 2015, 8, 7997-8008.	1.3	30
100	Composite anode electrode based on iridium oxide promoter for direct methanol fuel cells. Electrochimica Acta, 2014, 128, 304-310.	2.6	29
101	Graphene‣upported Substoichiometric Sodium Tantalate as a Methanolâ€Tolerant, Nonâ€Nobleâ€Metal Catalyst for the Electroreduction of Oxygen. ChemCatChem, 2015, 7, 911-915.	1.8	29
102	Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes. Materials, 2017, 10, 580.	1.3	29
103	Design of efficient methanol impermeable membranes for fuel cell applications. Physical Chemistry Chemical Physics, 2012, 14, 2718.	1.3	28
104	Metal oxide promoters for methanol electro-oxidation. International Journal of Hydrogen Energy, 2014, 39, 9782-9790.	3.8	28
105	Reduced methanol crossover and enhanced proton transport in nanocomposite membranes based on clayâ^'CNTs hybrid materials for direct methanol fuel cells. Ionics, 2017, 23, 2113-2123.	1.2	28
106	Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack. Journal of Power Sources, 2010, 195, 7727-7733.	4.0	27
107	Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016, 763, 10-17.	1.9	27
108	Performance and stability of counter electrodes based on reduced few-layer graphene oxide sheets and reduced graphene oxide quantum dots for dye-sensitized solar cells. Electrochimica Acta, 2019, 306, 396-406.	2.6	27

#	Article	IF	CITATIONS
109	Electrocatalysis of Oxygen on Bifunctional Nickelâ€Cobaltite Spinel. ChemElectroChem, 2020, 7, 124-130.	1.7	27
110	Optimization of perfluorosulphonic ionomer amount in gas diffusion electrodes for PEMFC operation under automotive conditions. Electrochimica Acta, 2015, 165, 450-455.	2.6	26
111	Methanol and proton transport in layered double hydroxide and smectite clay-based composites: influence on the electrochemical behavior of direct methanol fuel cells at intermediate temperatures. Journal of Solid State Electrochemistry, 2015, 19, 2053-2061.	1.2	26
112	Electrochemical analysis of high temperature methanol electro-oxidation at Pt-decorated Ru catalysts. Journal of Electroanalytical Chemistry, 2005, 576, 161-169.	1.9	25
113	NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs. Membranes, 2012, 2, 325-345.	1.4	25
114	A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel-iron hexacyanoferrate. Electrochimica Acta, 2016, 206, 127-133.	2.6	25
115	TowardÂmore efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning. Materials Today Energy, 2020, 18, 100508.	2.5	25
116	IrO2 as a promoter of Pt–Ru for methanol electro-oxidation. Physical Chemistry Chemical Physics, 2014, 16, 10414.	1.3	24
117	Influence of Metal Oxide Additives on the Activity and Stability of PtRu/C for Methanol Electro-Oxidation. Journal of the Electrochemical Society, 2015, 162, F713-F717.	1.3	24
118	Pd supported on Ti-suboxides as bifunctional catalyst for air electrodes of metal-air batteries. International Journal of Hydrogen Energy, 2016, 41, 19579-19586.	3.8	23
119	Investigation of Pd-based electrocatalysts for oxygen reduction in PEMFCs operating under automotive conditions. Journal of Power Sources, 2013, 222, 390-399.	4.0	22
120	Toward optimization of a robust lowâ€cost sulfonatedâ€polyethersulfone containing layered double hydroxide for PEM fuel cells. Journal of Applied Polymer Science, 2019, 136, 47884.	1.3	22
121	Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane. Electrochimica Acta, 2010, 55, 6022-6027.	2.6	21
122	Development of a planar μDMFC operating at room temperature. International Journal of Hydrogen Energy, 2011, 36, 8088-8093.	3.8	21
123	Fuel cell performance and durability investigation of bimetallic radical scavengers in Aquivion ® perfluorosulfonic acid membranes. International Journal of Hydrogen Energy, 2017, 42, 27987-27994.	3.8	21
124	Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application. Materials, 2017, 10, 317.	1.3	21
125	Increasing the stability of membrane-electrode assemblies based on Aquivion® membranes under automotive fuel cell conditions by using proper catalysts and ionomers. Journal of Electroanalytical Chemistry, 2019, 842, 59-65.	1.9	21
126	Engineering of a Lowâ€Cost, Highly Active, and Durable Tantalate–Graphene Hybrid Electrocatalyst for Oxygen Reduction. Advanced Energy Materials, 2020, 10, 2000075.	10.2	21

#	Article	IF	CITATIONS
127	PEO–PPO–PEO triblock copolymer/Nafion blend as membrane material for intermediate temperature DMFCs. Journal of Applied Electrochemistry, 2008, 38, 543-550.	1.5	20
128	Platinum Ruthenium Catalysts Supported on Carbon Xerogel for Methanol Electroâ€Oxidation: Influence of the Catalyst Synthesis Method. ChemCatChem, 2013, 5, 3770-3780.	1.8	20
129	Carbon Nanofibers as Advanced Pd Catalyst Supports for the Air Electrode of Alkaline Metal–Air Batteries. ChemPlusChem, 2015, 80, 1384-1388.	1.3	20
130	PtCo catalyst with modulated surface characteristics for the cathode of direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5399-5405.	3.8	19
131	Sulfated titania as additive in Nafion membranes for water electrolysis applications. International Journal of Hydrogen Energy, 2017, 42, 27851-27858.	3.8	19
132	Optimal operating conditions evaluation of an anion-exchange-membrane electrolyzer based on FUMASEPA® FAA3-50 membrane. International Journal of Hydrogen Energy, 2023, 48, 11914-11921.	3.8	19
133	Investigation of a Pt–Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells. Journal of Nanoparticle Research, 2010, 12, 357-365.	0.8	18
134	Application of Low-Cost Me-N-C (Me = Fe or Co) Electrocatalysts Derived from EDTA in Direct Methanol Fuel Cells (DMFCs). Materials, 2018, 11, 1193.	1.3	18
135	Glucose electrooxidation reaction in presence of dopamine and uric acid over ketjenblack carbon supported PdCo electrocatalyst. Journal of Electroanalytical Chemistry, 2019, 855, 113610.	1.9	17
136	Platinum group metal-free Fe-based (Fe N C) oxygen reduction electrocatalysts for direct alcohol fuel cells. Current Opinion in Electrochemistry, 2021, 29, 100756.	2.5	17
137	Durability of a PtSn Ethanol Oxidation Electrocatalyst. ChemElectroChem, 2014, 1, 1403-1406.	1.7	16
138	Polymer Electrolyte Membranes for Water Photo-Electrolysis. Membranes, 2017, 7, 25.	1.4	16
139	Enhanced Ionic Conductivity in Planar Sodiumâ€Î²â€â€Alumina Electrolyte for Electrochemical Energy Storage Applications. ChemSusChem, 2010, 3, 1390-1397.	3.6	15
140	Composite Anode Electrocatalyst for Direct Methanol Fuel Cells. Electrocatalysis, 2013, 4, 235-240.	1.5	15
141	Improving the stability and discharge capacity of nanostructured Fe2O3/C anodes for iron-air batteries and investigation of 1-octhanethiol as an electrolyte additive. Electrochimica Acta, 2019, 318, 625-634.	2.6	14
142	Evaluation of hot pressing parameters on the electrochemical performance of MEAs based on Aquivion® PFSA membranes. Journal of Energy Chemistry, 2019, 35, 168-173.	7.1	14
143	Composite Nafion-CaTiO3-δ Membranes as Electrolyte Component for PEM Fuel Cells. Polymers, 2020, 12, 2019.	2.0	14
144	Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells. Journal of Power Sources, 2010, 195, 649-661.	4.0	13

#	Article	IF	CITATIONS
145	Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a NiFe-Oxide co-Catalyst. Catalysts, 2020, 10, 525.	1.6	13
146	Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment. International Journal of Hydrogen Energy, 2017, 42, 28063-28069.	3.8	12
147	Direct methanol fuel cell stack for auxiliary power units applications based on fumapem® F-1850 membrane. International Journal of Hydrogen Energy, 2017, 42, 26889-26896.	3.8	12
148	Anionic Exchange Membrane for Photo-Electrolysis Application. Polymers, 2020, 12, 2991.	2.0	12
149	Investigating the durability of a direct methanol fuel cell equipped with commercial Platinum Group Metal-free cathodic electro-catalysts. Electrochimica Acta, 2021, 394, 139108.	2.6	12
150	Pt dendrimer nanocomposites for oxygen reduction reaction in direct methanol fuel cells. Journal of Solid State Electrochemistry, 2010, 14, 835-840.	1.2	11
151	PtRu Nanoparticles Deposited by the Sulfite Complex Method on Highly Porous Carbon Xerogels: Effect of the Thermal Treatment. Catalysts, 2013, 3, 744-756.	1.6	11
152	AC impedance spectroscopy investigation of carbon supported Pt3Co and Pt cathode catalysts in direct methanol fuel cell. International Journal of Hydrogen Energy, 2014, 39, 8026-8033.	3.8	11
153	Titanium–tantalum oxide as a support for Pd nanoparticles for the oxygen reduction reaction in alkaline electrolytes. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	11
154	Investigation of IrO ₂ /Pt Electrocatalysts in Unitized Regenerative Fuel Cells. International Journal of Electrochemistry, 2011, 2011, 1-5.	2.4	10
155	Toward Tandem Solar Cells for Water Splitting Using Polymer Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 25393-25400.	4.0	10
156	Membranes for portable direct alcohol fuel cells. Desalination, 2006, 200, 653-655.	4.0	9
157	Composite Polymer Electrolyte for Direct Ethanol Fuel Cell Application ECS Transactions, 2006, 3, 1317-1323.	0.3	9
158	Electrocatalytic Activity and Durability of Pt-Decorated Non-Covalently Functionalized Graphitic Structures. Catalysts, 2015, 5, 1622-1635.	1.6	9
159	A Comparison of Pd/C, Perovskite, and Ni-Fe Hexacyanoferrate Bifunctional Oxygen Catalysts, at Different Loadings and Catalyst Layer Thicknesses on an Oxygen Gas Diffusion Electrode. Journal of the Electrochemical Society, 2018, 165, A1254-A1262.	1.3	9
160	Performance Improvement in Direct Methanol Fuel Cells by Using CaTiO3-δAdditive at the Cathode. Catalysts, 2019, 9, 1017.	1.6	9
161	Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer. Catalysts, 2020, 10, 1319.	1.6	9
162	Selective electro-oxidation of dopamine on Co or Fe supported onto N-doped ketjenblack. Electrochimica Acta, 2022, 409, 139943.	2.6	9

#	Article	IF	CITATIONS
163	Evaluation of Palladium-based electrocatalyst for oxygen reduction and hydrogen oxidation in intermediate temperature polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21581-21587.	3.8	8
164	Facile synthesis of Zr- and Ta-based catalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2015, 36, 484-489.	6.9	8
165	Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells. Catalysts, 2022, 12, 264.	1.6	8
166	Preparation and Application of IrO2/Pt Electrocatalyst for Regenerative Fuel Cells. ECS Transactions, 2007, 11, 191-196.	0.3	7
167	Implementation and optimization of the HySyLab DMFC single cell test station. International Journal of Hydrogen Energy, 2011, 36, 8082-8087.	3.8	7
168	Catalysis for Low-Temperature Fuel Cells. Catalysts, 2017, 7, 370.	1.6	7
169	Enhancing Oxygen Reduction Reaction Catalytic Activity Using a Sub‣toichiometric CaTiO 3â^' δ Additive. ChemElectroChem, 2019, 6, 5941-5945.	1.7	7
170	Water Splitting with Enhanced Efficiency Using a Nickel-Based Co-Catalyst at a Cupric Oxide Photocathode. Catalysts, 2021, 11, 1363.	1.6	7
171	New Insights into Properties of Methanol Transport in Sulfonated Polysulfone Composite Membranes for Direct Methanol Fuel Cells. Polymers, 2021, 13, 1386.	2.0	6
172	Fluorine-doping boosts performance. Nature Energy, 2021, 6, 1096-1097.	19.8	6
173	Enhancement of Oxygen Reduction and Mitigation of Ionomer Dry-Out Using Insoluble Heteropoly Acids in Intermediate Temperature Polymer-Electrolyte Membrane Fuel Cells. Energies, 2015, 8, 7805-7817.	1.6	5
174	Advanced Materials in Polymer Electrolyte Fuel Cells. Materials, 2017, 10, 1163.	1.3	5
175	Effect of 1-octanethiol as an electrolyte additive on the performance of the iron-air battery electrodes. Journal of Solid State Electrochemistry, 2021, 25, 225-230.	1.2	5
176	Influence of Ionomer Content in the Catalytic Layer of MEAs Based on Aquivion \hat{A}^{\circledast} Ionomer. Polymers, 2021, 13, 3832.	2.0	5
177	ACâ€Impedance Investigation of Different MEA Configurations for Passiveâ€Mode DMFC Miniâ€Stack Applications. Fuel Cells, 2010, 10, 124-131.	1.5	4
178	Electrochemical Behavior of Direct Methanol Fuel Cells Based on Acidic Silica - Sulfonated Polysulfone Composite Membranes. ECS Transactions, 2011, 41, 2003-2009.	0.3	3
179	Oxygen Reduction Reaction: Engineering of a Lowâ€Cost, Highly Active, and Durable Tantalate–Graphene Hybrid Electrocatalyst for Oxygen Reduction (Adv. Energy Mater. 24/2020). Advanced Energy Materials, 2020, 10, 2070105.	10.2	3
180	Influence of Ionomer Loading on the Performance of Pt-Ru and Pt-Fe Electrodes Used in DMFCs. ECS Transactions, 2006, 1, 283-291.	0.3	2

#	Article	IF	CITATIONS
181	Investigation of a Passive DMFC Mini-Stack at Room Temperature. Advances in Science and Technology, 0, , .	0.2	2
182	Nanomaterials for Fuel Cell Technologies. , 0, , 79-109.		2
183	Direct Methanol Fuel Cell Stack Design and Test in the Framework of DURAMET Project. Advances in Science and Technology, 0, , .	0.2	2
184	Design of Supported PtCo Electrocatalysts for Pemfcs. ECS Transactions, 2015, 69, 263-272.	0.3	2
185	Non platinum-based cathode catalyst systems for direct methanol fuel cells. , 2020, , 289-316.		2
186	Increasing the Operating Temperature of Nafion Membranes with Addition of Nanocrystalline Oxides for Direct Methanol Fuel Cells. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	1
187	Investigation of a PEM Water Electrolyzer Based on a Sulfonated Polysulfone Membrane. ECS Transactions, 2013, 58, 615-620.	0.3	1
188	Composite Anode Catalysts Based on PtRu and Metal Oxide Nanoparticles for DMFCs. Advances in Science and Technology, 0, , .	0.2	1
189	Electrocatalysis of Direct Methanol and Ethanol Oxidation in Polymer Electrolyte Fuel Cells. ECS Transactions, 2015, 69, 833-845.	0.3	1
190	Modifications of Sulfonic Acid-Based Membranes. , 2016, , 5-36.		1
191	Composite Inorganic Filler Based Electrolyte Membranes for Fuel Cells Applications. Materials Research Society Symposia Proceedings, 2004, 835, K7.1.1.	0.1	0
192	Planar Structure μDMFCs. ECS Transactions, 2009, 17, 485-489.	0.3	0
193	Investigation of a Cathodic Bimetallic Catalyst Based on Platinum and Cobalt for Application in Direct Methanol Fuel Cells. ECS Transactions, 2013, 58, 1715-1721.	0.3	0
194	Enhancing Oxygen Reduction Reaction Catalytic Activity Using a Sub‣toichiometric CaTiO 3ⴒ δ Additive. ChemElectroChem, 2019, 6, 5910-5910.	1.7	0
195	Top 10 Cited Papers in the Section "Electrocatalysis― Catalysts, 2020, 10, 1378.	1.6	0
196	Electrocatalysts for Energy Conversion and Storage Devices. Catalysts, 2021, 11, 1491.	1.6	0