## Joseph A Piccirilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2653850/publications.pdf Version: 2024-02-01



LOSEDH A PICCIPILL

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature, 1993, 361, 85-88.                                                                                                                                | 13.7 | 403       |
| 2  | Hachimoji DNA and RNA: A genetic system with eight building blocks. Science, 2019, 363, 884-887.                                                                                                                   | 6.0  | 337       |
| 3  | A C-quadruplex–containing RNA activates fluorescence in a GFP-like fluorophore. Nature Chemical<br>Biology, 2014, 10, 686-691.                                                                                     | 3.9  | 277       |
| 4  | Ribozyme-catalyzed and nonenzymic reactions of phosphate diesters: rate effects upon substitution of sulfur for a nonbridging phosphoryl oxygen atom. Biochemistry, 1991, 30, 4844-4854.                           | 1.2  | 276       |
| 5  | General acid catalysis by the hepatitis delta virus ribozyme. Nature Chemical Biology, 2005, 1, 45-52.                                                                                                             | 3.9  | 217       |
| 6  | Metal ion catalysis during splicing of premessenger RNA. Nature, 1997, 388, 801-805.                                                                                                                               | 13.7 | 172       |
| 7  | RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. Rna, 2017, 23, 655-672.                                                                                                  | 1.6  | 158       |
| 8  | Synthesis, Properties, and Applications of Oligonucleotides Containing an RNA Dinucleotide<br>Phosphorothiolate Linkage. Accounts of Chemical Research, 2011, 44, 1257-1269.                                       | 7.6  | 152       |
| 9  | Defining the Catalytic Metal Ion Interactions in theTetrahymenaRibozyme Reactionâ€. Biochemistry,<br>2001, 40, 5161-5171.                                                                                          | 1.2  | 145       |
| 10 | Synthetic antibodies for specific recognition and crystallization of structured RNA. Proceedings of the United States of America, 2008, 105, 82-87.                                                                | 3.3  | 119       |
| 11 | Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: Extending the parallels between the spliceosome and group II introns. Rna, 2000, 6, 199-205.                                       | 1.6  | 106       |
| 12 | The 2.5ÂÃ Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally<br>Suited for Diverse Antigen Presentation. Immunity, 2010, 33, 853-862.                                          | 6.6  | 103       |
| 13 | The role of the cleavage site 2′-hydroxyl in the Tetrahymena group I ribozyme reaction. Chemistry and<br>Biology, 2000, 7, 85-96.                                                                                  | 6.2  | 99        |
| 14 | Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. , 2001, 8, 893-898.                                                                                                  |      | 98        |
| 15 | Evidence for a group II intron–like catalytic triplex in the spliceosome. Nature Structural and<br>Molecular Biology, 2014, 21, 464-471.                                                                           | 3.6  | 97        |
| 16 | Crystal structure of the Varkud satellite ribozyme. Nature Chemical Biology, 2015, 11, 840-846.                                                                                                                    | 3.9  | 96        |
| 17 | Structures of Normal Single-Stranded DNA and Deoxyribo-3â€~-S-phosphorothiolates Bound to the 3â€~-5â€~<br>Exonucleolytic Active Site of DNA Polymerase I from Escherichia coli,. Biochemistry, 1999, 38, 696-704. | 1.2  | 77        |
| 18 | A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nature Structural and Molecular Biology, 2011, 18, 100-106.                                                | 3.6  | 75        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kinetic Characterization of the Second Step of Group II Intron Splicing:  Role of Metal Ions and the Cleavage Site 2â€~-OH in Catalysis. Biochemistry, 2000, 39, 12939-12952.                                                                       | 1.2 | 74        |
| 20 | A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nature Structural Biology, 1999, 6, 318-321.                                                                                               | 9.7 | 72        |
| 21 | General Acid–Base Catalysis Mediated by Nucleobases in the Hairpin Ribozyme. Journal of the American<br>Chemical Society, 2012, 134, 16717-16724.                                                                                                   | 6.6 | 72        |
| 22 | Molecular Analysis of Lipid-Reactive Vδ1 γδ T Cells Identified by CD1c Tetramers. Journal of Immunology,<br>2016, 196, 1933-1942.                                                                                                                   | 0.4 | 72        |
| 23 | Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. Proceedings of the<br>National Academy of Sciences of the United States of America, 2010, 107, 11751-11756.                                                       | 3.3 | 69        |
| 24 | Functional Identification of Catalytic Metal Ion Binding Sites within RNA. PLoS Biology, 2005, 3, e277.                                                                                                                                             | 2.6 | 67        |
| 25 | Identification of catalytic metal ion ligands in ribozymes. Methods, 2009, 49, 148-166.                                                                                                                                                             | 1.9 | 66        |
| 26 | Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen. Nucleic Acids Research, 2016, 44, gkw890.                                                                   | 6.5 | 63        |
| 27 | Experimental and computational analysis of the transition state for ribonuclease A-catalyzed RNA 2′-<br><i>O</i> -transphosphorylation. Proceedings of the National Academy of Sciences of the United States<br>of America, 2013, 110, 13002-13007. | 3.3 | 62        |
| 28 | Spinach RNA aptamer detects lead( <scp>ii</scp> ) with high selectivity. Chemical Communications, 2015, 51, 9034-9037.                                                                                                                              | 2.2 | 62        |
| 29 | A Second Divalent Metal Ion in the Group II Intron Reaction Center. Chemistry and Biology, 2007, 14, 607-612.                                                                                                                                       | 6.2 | 61        |
| 30 | Characterization of the Reaction Path and Transition States for RNA Transphosphorylation Models from Theory and Experiment. Angewandte Chemie - International Edition, 2012, 51, 647-651.                                                           | 7.2 | 49        |
| 31 | Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nature<br>Chemistry, 2020, 12, 249-259.                                                                                                                   | 6.6 | 49        |
| 32 | Identification of an Active Site Ligand for a Group I Ribozyme Catalytic Metal Ionâ€. Biochemistry, 2002,<br>41, 2516-2525.                                                                                                                         | 1.2 | 46        |
| 33 | Kinetic Isotope Effects for RNA Cleavage by 2′-O- Transphosphorylation: Nucleophilic Activation by Specific Base. Journal of the American Chemical Society, 2010, 132, 11613-11621.                                                                 | 6.6 | 46        |
| 34 | An Ontology for Facilitating Discussion of Catalytic Strategies of RNA-Cleaving Enzymes. ACS<br>Chemical Biology, 2019, 14, 1068-1076.                                                                                                              | 1.6 | 45        |
| 35 | The SARS-CoV-2 Programmed â^'1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Ã<br>Using Chaperone-Assisted RNA Crystallography. ACS Chemical Biology, 2021, 16, 1469-1481.                                                       | 1.6 | 44        |
| 36 | Functional Evidence That the 3â€~-5â€~ Exonuclease Domain ofEscherichia coliDNA Polymerase I Employs a<br>Divalent Metal Ion in Leaving Group Stabilization. Journal of the American Chemical Society, 1997, 119,<br>12691-12692.                   | 6.6 | 41        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes. Journal of the American Chemical Society, 2019, 141, 7865-7875.                                                      | 6.6 | 41        |
| 38 | Functional Identification of Ligands for a Catalytic Metal Ion in Group I Introns. Biochemistry, 2008, 47, 6883-6894.                                                                                    | 1.2 | 40        |
| 39 | Nucleotide analogues to investigate RNA structure and function. Current Opinion in Chemical Biology, 2005, 9, 585-593.                                                                                   | 2.8 | 38        |
| 40 | Separation of RNA Phosphorothioate Oligonucleotides by HPLC. Methods in Enzymology, 2009, 468, 289-309.                                                                                                  | 0.4 | 38        |
| 41 | Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif.<br>Nature Communications, 2018, 9, 4542.                                                             | 5.8 | 37        |
| 42 | Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding.<br>Rna, 2012, 18, 1123-1141.                                                                       | 1.6 | 36        |
| 43 | Altered (transition) states: mechanisms of solution and enzyme catalyzed RNA $2\hat{a}\in^2$ -O-transphosphorylation. Current Opinion in Chemical Biology, 2014, 21, 96-102.                             | 2.8 | 34        |
| 44 | Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme. Nature Chemistry, 2020, 12, 193-201.                                                               | 6.6 | 33        |
| 45 | New Strategies for Exploring RNA's 2′-OH Expose the Importance of Solvent during Group II Intron<br>Catalysis. Chemistry and Biology, 2004, 11, 237-246.                                                 | 6.2 | 32        |
| 46 | Highly Stereocontrolled Total Synthesis of β- <scp>d</scp> -Mannosyl Phosphomycoketide: A Natural<br>Product from <i>Mycobacterium tuberculosis</i> . Journal of Organic Chemistry, 2013, 78, 5970-5986. | 1.7 | 30        |
| 47 | 2â€~-Mercaptonucleotide Interference Reveals Regions of Close Packing within Folded RNA Molecules.<br>Journal of the American Chemical Society, 2003, 125, 10012-10018.                                  | 6.6 | 29        |
| 48 | Arginine as a General Acid Catalyst in Serine Recombinase-mediated DNA Cleavage. Journal of<br>Biological Chemistry, 2013, 288, 29206-29214.                                                             | 1.6 | 28        |
| 49 | Synthesizing topological structures containing RNA. Nature Communications, 2017, 8, 14936.                                                                                                               | 5.8 | 26        |
| 50 | Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography.<br>Nucleic Acids Research, 2018, 46, 2624-2635.                                                             | 6.5 | 25        |
| 51 | The L-platform/L-scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme design. Rna, 2020, 26, 111-125.                                                                                    | 1.6 | 25        |
| 52 | The Mechanism of RNA Strand Scission: An Experimental Measure of the BrÃ,nsted Coefficient,βnuc.<br>Angewandte Chemie - International Edition, 2007, 46, 3714-3717.                                      | 7.2 | 24        |
| 53 | Reactions of phosphate and phosphorothiolate diesters with nucleophiles: comparison of transition state structures. Organic and Biomolecular Chemistry, 2007, 5, 2491.                                   | 1.5 | 23        |
| 54 | Evidence for a Catalytic Strategy to Promote Nucleophile Activation in Metal-Dependent RNA-Cleaving<br>Ribozymes and 8-17 DNAzyme. ACS Catalysis, 2019, 9, 10612-10617.                                  | 5.5 | 22        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Rearrangement of the Guanosine-Binding Site Establishes an Extended Network of Functional<br>Interactions in the <i>Tetrahymena</i> Group I Ribozyme Active Site. Biochemistry, 2010, 49, 2753-2762.                                     | 1.2 | 21        |
| 56 | Structural Basis for Substrate Helix Remodeling and Cleavage Loop Activation in the Varkud Satellite Ribozyme. Journal of the American Chemical Society, 2017, 139, 9591-9597.                                                             | 6.6 | 21        |
| 57 | Sub-3-Ã cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nature Methods, 2022, 19, 576-585.                                                                                                                         | 9.0 | 21        |
| 58 | Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1801-1808.                                                                     | 1.1 | 20        |
| 59 | Leaving group stabilization by metal ion coordination and hydrogen bond donation is an<br>evolutionarily conserved feature of group I introns. Biochimica Et Biophysica Acta Gene Regulatory<br>Mechanisms, 2001, 1522, 158-166.           | 2.4 | 19        |
| 60 | The 2′-Hydroxyl Group of the Guanosine Nucleophile Donates a Functionally Important Hydrogen Bond<br>in the <i>Tetrahymena</i> Ribozyme Reaction. Biochemistry, 2008, 47, 7684-7694.                                                       | 1.2 | 19        |
| 61 | Synthesis of 2â€ <sup>-</sup> -C-β-Fluoromethyluridine. Organic Letters, 2003, 5, 807-810.                                                                                                                                                 | 2.4 | 18        |
| 62 | A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair.<br>Angewandte Chemie - International Edition, 2015, 54, 9853-9856.                                                                              | 7.2 | 18        |
| 63 | Reverse transcriptases lend a hand in splicing catalysis. Nature Structural and Molecular Biology, 2016, 23, 507-509.                                                                                                                      | 3.6 | 18        |
| 64 | Drug conjugated nanoparticles activated by cancer cell specific mRNA. Oncotarget, 2016, 7, 38243-38256.                                                                                                                                    | 0.8 | 17        |
| 65 | A general and efficient approach for the construction of RNA oligonucleotides containing a<br>5′-phosphorothiolate linkage. Nucleic Acids Research, 2011, 39, e31-e31.                                                                     | 6.5 | 16        |
| 66 | Effect of Zn2+ binding and enzyme active site on the transition state for RNA<br>2′-O-transphosphorylation interpreted through kinetic isotope effects. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2015, 1854, 1795-1800. | 1.1 | 16        |
| 67 | Prolactin Receptor–Mediated Internalization of Imaging Agents Detects Epithelial Ovarian Cancer with Enhanced Sensitivity and Specificity. Cancer Research, 2017, 77, 1684-1696.                                                           | 0.4 | 16        |
| 68 | An Atomic Mutation Cycle for Exploring RNA's 2â€~-Hydroxyl Group. Journal of the American Chemical<br>Society, 2004, 126, 13578-13579.                                                                                                     | 6.6 | 15        |
| 69 | A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites. Nature Communications, 2019, 10, 3629.                                                                                         | 5.8 | 15        |
| 70 | Modulation of individual steps in group I intron catalysis by a peripheral metal ion. Rna, 2007, 13,<br>1656-1667.                                                                                                                         | 1.6 | 14        |
| 71 | Structure and Function Converge To Identify a Hydrogen Bond in a Groupâ€I Ribozyme Active Site.<br>Angewandte Chemie - International Edition, 2009, 48, 7171-7175.                                                                         | 7.2 | 14        |
| 72 | Synthetic Antibody Binding to a Preorganized RNA Domain of Hepatitis C Virus Internal Ribosome Entry<br>Site Inhibits Translation. ACS Chemical Biology, 2020, 15, 205-216.                                                                | 1.6 | 14        |

| #  | Article                                                                                                                                                                                                                                                         | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 73 | Improved synthesis of 2′-amino-2′-deoxyguanosine and its phosphoramidite. Bioorganic and Medicinal<br>Chemistry, 2006, 14, 705-713.                                                                                                                             | 1.4       | 13        |
| 74 | 2′-Fluoro Substituents Can Mimic Native 2′-Hydroxyls within Structured RNA. Chemistry and Biology, 2011, 18, 949-954.                                                                                                                                           | 6.2       | 13        |
| 75 | RNA seeks its maker. Nature, 1995, 376, 548-549.                                                                                                                                                                                                                | 13.7      | 12        |
| 76 | Synthesis of stereopure acyclic 1,5-dimethylalkane chirons: building blocks of highly methyl-branched natural products. Tetrahedron, 2013, 69, 9633-9641.                                                                                                       | 1.0       | 12        |
| 77 | A Packing-Density Metric for Exploring the Interior of Folded RNA Molecules. Angewandte Chemie -<br>International Edition, 2004, 43, 3033-3037.                                                                                                                 | 7.2       | 11        |
| 78 | Transition State Features in the Hepatitis Delta Virus Ribozyme Reaction Revealed by Atomic Perturbations. Journal of the American Chemical Society, 2015, 137, 8973-8982.                                                                                      | 6.6       | 11        |
| 79 | Specific Recognition of a Single-Stranded RNA Sequence by a Synthetic Antibody Fragment. Journal of Molecular Biology, 2016, 428, 4100-4114.                                                                                                                    | 2.0       | 11        |
| 80 | RNA made in its own mirror image. Nature, 2014, 515, 347-348.                                                                                                                                                                                                   | 13.7      | 10        |
| 81 | Heavy atom labeled nucleotides for measurement of kinetic isotope effects. Biochimica Et Biophysica<br>Acta - Proteins and Proteomics, 2015, 1854, 1737-1745.                                                                                                   | 1.1       | 10        |
| 82 | Structural basis for substrate binding and catalysis by a self-alkylating ribozyme. Nature Chemical<br>Biology, 2022, 18, 376-384.                                                                                                                              | 3.9       | 10        |
| 83 | Syntheses of (2â€~)3â€~-15N-Amino-(2â€~)3â€~-deoxyguanosine and Determination of Their pKa Values by 15N N<br>Spectroscopy. Organic Letters, 2007, 9, 3057-3060.                                                                                                | MR<br>2.4 | 8         |
| 84 | Crystal structure of an RNA polymerase ribozyme in complex with an antibody fragment.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2918-2928.                                                                          | 1.8       | 8         |
| 85 | Efficient Synthetic Approach to Linear Dasatinib–DNA Conjugates by Click Chemistry. Bioconjugate<br>Chemistry, 2016, 27, 2575-2579.                                                                                                                             | 1.8       | 8         |
| 86 | lsotope effect analyses provide evidence for an altered transition state for RNA<br>2′-O-transphosphorylation catalyzed by Zn2+. Chemical Communications, 2016, 52, 4462-4465.                                                                                  | 2.2       | 8         |
| 87 | Synthesis and biochemical application of 2′-O-methyl-3′-thioguanosine as a probe to explore group I<br>intron catalysis. Bioorganic and Medicinal Chemistry, 2008, 16, 5754-5760.                                                                               | 1.4       | 7         |
| 88 | Synthesis of 2′-C-Branched Nucleosides. Organic Preparations and Procedures International, 2010, 42, 191-283.                                                                                                                                                   | 0.6       | 7         |
| 89 | Synthesis and Incorporation of the Phosphoramidite Derivative of 2′- <i>O</i> -Photocaged<br>3′- <i>S</i> -Thioguanosine into Oligoribonucleotides: Substrate for Probing the Mechanism of RNA<br>Catalysis. Journal of Organic Chemistry, 2014, 79, 3647-3652. | 1.7       | 7         |
| 90 | Synthesis of 2â€2- <i>O</i> -Photocaged Ribonucleoside Phosphoramidites. Nucleosides, Nucleotides and Nucleic Acids, 2015, 34, 114-129.                                                                                                                         | 0.4       | 7         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | An active site rearrangement within the <i>Tetrahymena</i> group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. Rna, 2016, 22, 32-48.                                                                        | 1.6 | 7         |
| 92  | The Varkud Satellite Ribozyme: A Thirty-Year Journey through Biochemistry, Crystallography, and Computation. Accounts of Chemical Research, 2021, 54, 2591-2602.                                                                                             | 7.6 | 7         |
| 93  | Synthesis of 3â€2-Thioribouridine, 3â€2-Thioribocytidine, and Their Phosphoramidites. Nucleosides &<br>Nucleotides, 1997, 16, 1543-1545.                                                                                                                     | 0.5 | 6         |
| 94  | Determination of hepatitis delta virus ribozyme N(–1) nucleobase and functional group specificity<br>using internal competition kinetics. Analytical Biochemistry, 2015, 483, 12-20.                                                                         | 1.1 | 6         |
| 95  | Tightening of Active Site Interactions En Route to the Transition State Revealed by Single-Atom<br>Substitution in the Guanosine-Binding Site of the <i>Tetrahymena</i> Group I Ribozyme. Journal of the<br>American Chemical Society, 2011, 133, 7791-7800. | 6.6 | 5         |
| 96  | Enzyme transition states from theory and experiment. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1727-1728.                                                                                                                         | 1.1 | 5         |
| 97  | Reinvestigating the synthesis and efficacy of small benzimidazole derivatives as presequence protease enhancers. European Journal of Medicinal Chemistry, 2019, 184, 111746.                                                                                 | 2.6 | 5         |
| 98  | Structures of artificially designed discrete RNA nanoarchitectures at near-atomic resolution. Science Advances, 2021, 7, eabf4459.                                                                                                                           | 4.7 | 5         |
| 99  | Structural Basis for Fluorescence Activation by Pepper RNA. ACS Chemical Biology, 2022, 17, 1866-1875.                                                                                                                                                       | 1.6 | 5         |
| 100 | 2′-Amino-Modified Ribonucleotides as Probes for Local Interactions Within RNA. Methods in Enzymology, 2009, 468, 107-125.                                                                                                                                    | 0.4 | 4         |
| 101 | Efficient synthesis of 2′-C-α-aminomethyl-2′-deoxynucleosides. Chemical Communications, 2012, 48, 8754.                                                                                                                                                      | 2.2 | 4         |
| 102 | Evidence That Nucleophile Deprotonation Exceeds Bond Formation in the HDV Ribozyme Transition State. Biochemistry, 2018, 57, 3465-3472.                                                                                                                      | 1.2 | 4         |
| 103 | The Positively Charged Active Site of the Bacterial Toxin RelE Causes a Large Shift in the General Base<br>p <i>K</i> <sub>a</sub> . Biochemistry, 2020, 59, 1665-1671.                                                                                      | 1.2 | 4         |
| 104 | The hammerhead self-cleaving motif as a precursor to complex endonucleolytic ribozymes. Rna, 2021, 27, 1017-1024.                                                                                                                                            | 1.6 | 4         |
| 105 | Synthesis of 5′-Thio-3′- <i>O</i> -ribonucleoside Phosphoramidites. Journal of Organic Chemistry, 2017,<br>82, 12003-12013.                                                                                                                                  | 1.7 | 3         |
| 106 | Kinetic Isotope Effect Analysis of RNA 2′- O -Transphosphorylation. Methods in Enzymology, 2017, 596, 433-457.                                                                                                                                               | 0.4 | 3         |
| 107 | Synthesis of Oligoribonucleotides Containing a 2′-Amino-5′- <i>S</i> -phosphorothiolate Linkage. Journal of Organic Chemistry, 2021, 86, 13231-13244.                                                                                                        | 1.7 | 2         |
| 108 | Toward Understanding Self-Splicing. Science, 2008, 320, 56-57.                                                                                                                                                                                               | 6.0 | 1         |

| #   | Article                                                                                                                                                                                                                                           | IF           | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 109 | Synthesis of 2′-N-Methylamino-2′-deoxyguanosine and 2′-N,N-Dimethylamino-2′-deoxyguanosine and Incorporation into RNA by Phosphoramidite Chemistry. Journal of Organic Chemistry, 2011, 76, 8718-8725.                                            | Their<br>1.7 | 1         |
| 110 | Innenrücktitelbild: Characterization of the Reaction Path and Transition States for RNA<br>Transphosphorylation Models from Theory and Experiment (Angew. Chem. 3/2012). Angewandte Chemie,<br>2012, 124, 847-847.                                | 1.6          | 0         |
| 111 | Inside Back Cover: Characterization of the Reaction Path and Transition States for RNA<br>Transphosphorylation Models from Theory and Experiment (Angew. Chem. Int. Ed. 3/2012). Angewandte<br>Chemie - International Edition, 2012, 51, 823-823. | 7.2          | 0         |
| 112 | Constraining errors in splice site choice. FASEB Journal, 2010, 24, 305.3.                                                                                                                                                                        | 0.2          | 0         |