
Dale Cruikshank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2653820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A CO ₂ Cycle on Ariel? Radiolytic Production and Migration to Low-latitude Cold Traps. Planetary Science Journal, 2022, 3, 8.	1.5	9
2	Large-scale cryovolcanic resurfacing on Pluto. Nature Communications, 2022, 13, 1542.	5.8	15
3	A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. Planetary Science Journal, 2022, 3, 112.	1.5	15
4	Cryovolcanic flooding in Viking Terra on Pluto. Icarus, 2021, 356, 113786.	1.1	9
5	Compositional Study of Trans-Neptunian Objects at λÂ>Â2.2 μm. Planetary Science Journal, 2021, 2, 10.	1.5	7
6	Dione's Wispy Terrain: A Cryovolcanic Story?. Planetary Science Journal, 2021, 2, 83.	1.5	6
7	Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon. Remote Sensing, 2021, 13, 3476.	1.8	7
8	New Investigations of Dark-floored Pits In the Volatile Ice of Sputnik Planitia on Pluto. Astronomical Journal, 2021, 162, 207.	1.9	2
9	The Infrared Complex Refractive Index of Amorphous Ammonia Ice at 40 K (1.43–22.73 μm) and Its Relevance to Outer Solar System Bodies. Planetary Science Journal, 2021, 2, 240.	1.5	3
10	Probing the regoliths of the classical Uranian satellites: Are their surfaces mantled by a layer of tiny H2O ice grains?. Icarus, 2020, 338, 113513.	1.1	15
11	Spitzer's Solar System studies of comets, centaurs and Kuiper belt objects. Nature Astronomy, 2020, 4, 930-939.	4.2	9
12	Spitzer's Solar System studies of asteroids, planets and the zodiacal cloud. Nature Astronomy, 2020, 4, 940-946.	4.2	7
13	Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life, 2020, 10, 126.	1.1	7
14	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	6.0	64
15	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	6.0	76
16	The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367, .	6.0	79
17	Disk-resolved Photometric Properties of Pluto and the Coloring Materials across its Surface. Astronomical Journal, 2020, 159, 74.	1.9	18
18	Evidence for Ammonia-bearing Species on the Uranian Satellite Ariel Supports Recent Geologic Activity. Astrophysical Journal Letters, 2020, 898, L22.	3.0	38

#	Article	IF	CITATIONS
19	Evidence for Sulfur-bearing Species on Callisto's Leading Hemisphere: Sourced from Jupiter's Irregular Satellites or Io?. Astrophysical Journal Letters, 2020, 902, L38.	3.0	9
20	Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. Journal of Geophysical Research E: Planets, 2019, 124, 155-174.	1.5	11
21	Detection of ammonia on Pluto's surface in a region of geologically recent tectonism. Science Advances, 2019, 5, eaav5731.	4.7	49
22	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	6.0	113
23	Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 2019, 330, 155-168.	1.1	45
24	Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science, 2019, 363, 955-959.	6.0	116
25	Prebiotic Chemistry of Pluto. Astrobiology, 2019, 19, 831-848.	1.5	26
26	Kuiper Belt object 2014MU ₆₉ , Pluto and Phoebe as windows on the composition of the early solar nebula. Proceedings of the International Astronomical Union, 2019, 15, 91-95.	0.0	1
27	Spectroscopy of Pluto and Its Satellites. , 2019, , 442-452.		0
28	The distribution of H2O, CH3OH, and hydrocarbon-ices on Pluto: Analysis of New Horizons spectral images. Icarus, 2019, 331, 148-169.	1.1	21
29	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	1.1	47
30	Composition of Pluto's small satellites: Analysis of New Horizons spectral images. Icarus, 2018, 315, 30-45.	1.1	49
31	Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU ₆₉ ("Ultima Thuleâ€). Geophysical Research Letters, 2018, 45, 8111-8120.	1.5	14
32	The Global Color of Pluto from New Horizons. Astronomical Journal, 2017, 154, 258.	1.9	25
33	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	13.7	44
34	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	6.0	201
35	The small satellites of Pluto as observed by New Horizons. Science, 2016, 351, aae0030.	6.0	78
36	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	6.0	219

#	Article	IF	CITATIONS
37	Surface compositions across Pluto and Charon. Science, 2016, 351, aad9189.	6.0	242
38	ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N ₂ -, CH ₄ -, AND CO-CONTAINING ICES. Astrophysical Journal, 2015, 812, 150.	1.6	59
39	(50000) Quaoar: Surface composition variability. Astronomy and Astrophysics, 2015, 584, A107.	2.1	21
40	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	6.0	407
41	Impact craters: An ice study on Rhea. Icarus, 2015, 261, 80-90.	1.1	20
42	ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: CARBOXYLIC ACIDS, NITRILES, AND UREA DETECTED IN REFRACTORY RESIDUES PRODUCED FROM THE UV PHOTOLYSIS OF N ₂ :CH ₄ :CO-CONTAINING ICES. Astrophysical Journal, 2014, 788, 111.	1.6	48
43	The surface composition of lapetus: Mapping results from Cassini VIMS. Icarus, 2012, 218, 831-860.	1.1	136
44	Organic materials in planetary and protoplanetary systems: nature or nurture?. Astronomy and Astrophysics, 2011, 533, A98.	2.1	27
45	NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS. Astronomical Journal, 2011, 141, 25.	1.9	129
46	Dione's spectral and geological properties. Icarus, 2010, 206, 631-652.	1.1	61
47	OPTICAL CONSTANTS OF AMORPHOUS AND CRYSTALLINE H ₂ O-ICE: 2.5-22 μm (4000-455) Tj ET 1347-1356.	Qq1 1 0.7 1.6	84314 rgBT /(150
48	Hydrocarbons on Saturn's satellites lapetus and Phoebe. Icarus, 2008, 193, 334-343.	1.1	86
49	Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus, 2008, 193, 372-386.	1.1	135
50	Optical and chemical properties of tholins. Proceedings of the International Astronomical Union, 2008, 4, 441-442.	0.0	1
51	Surface characterization of Pluto and Charon by L and M band spectra. Astronomy and Astrophysics, 2008, 490, 365-375.	2.1	37
52	Composition and Physical Properties of Enceladus' Surface. Science, 2006, 311, 1425-1428.	6.0	199
53	Near-infrared (0.8–4.0Â\$mathsf{mu}\$m) spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astronomy and Astrophysics, 2005, 435, 353-362.	2.1	94
54	Near-infrared laboratory spectra of solid HO/CO and CHOH/CO ice mixtures. Icarus, 2005, 179, 527-534.	1.1	71

#	Article	IF	CITATIONS
55	Tholins as coloring agents on outer Solar System bodies. Advances in Space Research, 2005, 36, 178-183.	1.2	79
56	Triton, Pluto, Centaurs, and Trans-Neptunian Bodies. Space Science Reviews, 2005, 116, 421-439.	3.7	20
57	The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation. Space Science Reviews, 2004, 115, 111-168.	3.7	369
58	Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus, 2004, 168, 344-366.	1.1	284
59	Detection of ozone on Saturn's satellites Rhea and Dione. Nature, 1997, 388, 45-47.	13.7	171
60	Ices on the Surface of Triton. Science, 1993, 261, 742-745.	6.0	263
61	Solid Cî—¼N bearing material on outer solar system bodies. Icarus, 1991, 94, 345-353.	1.1	100
62	The 2.5–5.0 μm spectra of lo: Evidence for H2S and H2O frozen in SO2. Icarus, 1990, 83, 66-82.	1.1	73
63	The thermal structure of Triton's atmosphere: Preâ€Voyager models. Geophysical Research Letters, 1989, 16, 973-976.	1.5	9
64	Search for volatiles on icy satellites. Icarus, 1988, 74, 262-271.	1.1	41
65	The Uranian satellites: Surface compositions and opposition brightness surges. Icarus, 1983, 55, 83-92.	1.1	92
66	The Satellites of Uranus. International Astronomical Union Colloquium, 1982, 60, 193-210.	0.1	4
67	Diameters and albedos of satellites of Uranus. Nature, 1982, 300, 423-425.	13.7	35
68	Diameters of Triton and Pluto. Nature, 1982, 300, 425-427.	13.7	22
69	The Uranian satellites: Water ice on Ariel and Umbriel. Icarus, 1981, 45, 607-611.	1.1	42
70	Infrared spectrum of Io, 2.8–5.2 μm. Icarus, 1980, 41, 240-245.	1.1	18
71	Near-infrared studies of the satellites of Saturn and Uranus. Icarus, 1980, 41, 246-258.	1.1	87
72	Significance of absorption features in Io's IR reflectance spectrum. Nature, 1979, 280, 761-763.	13.7	142

#	Article	IF	CITATIONS
73	Identification of a new class of satellites in the outer solar system. Astrophysical Journal, 1977, 217, 1006.	1.6	32
74	Physical properties of the natural satellites. Space Science Reviews, 1974, 15, 641.	3.7	102
75	Lunar rilles and Hawaiian volcanic features: Possible analogues. The Moon, 1972, 3, 412-447.	0.4	57