Cuicui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2653508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short- and intermediate-term exposure to ambient fine particulate elements and leukocyte epigenome-wide DNA methylation in older men: the Normative Aging Study. Environment International, 2022, 158, 106955.	4.8	11
2	DunedinPACE, a DNA methylation biomarker of the pace of aging. ELife, 2022, 11, .	2.8	214
3	Associations between air pollution and psychiatric symptoms in the Normative Aging Study. Environmental Research Letters, 2022, 17, 034004.	2.2	4
4	Associations of Plasma Folate and Vitamin B6 With Blood DNA Methylation Age: An Analysis of One-Carbon Metabolites in the VA Normative Aging Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 760-769.	1.7	11
5	DNA methylation-based biomarkers of age acceleration and all-cause death, myocardial infarction, stroke, and cancer in two cohorts: The NAS, and KORA F4. EBioMedicine, 2021, 63, 103151.	2.7	42
6	Ambient PM2.5 species and ultrafine particle exposure and their differential metabolomic signatures. Environment International, 2021, 151, 106447.	4.8	41
7	Epigenome-wide DNA Methylation in Leukocyte and Toenail Metals: the Normative Aging Study. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
8	Acute exposures to air pollutants and asthma hospitalization in the Medicaid population. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
9	Long-term ambient fine particulate matter and DNA methylation in inflammation pathways: results from the Sister Study. Epigenetics, 2020, 15, 524-535.	1.3	21
10	Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study. Environmental Pollution, 2020, 258, 113690.	3.7	25
11	Necessity of personal sampling for exposure assessment on specific constituents of PM2.5: Results of a panel study in Shanghai, China. Environment International, 2020, 141, 105786.	4.8	20
12	Individual species and cumulative mixture relationships of 24-hour urine metal concentrations with DNA methylation age variables in older men. Environmental Research, 2020, 186, 109573.	3.7	16
13	Biomarkers of aging and lung function in the normative aging study. Aging, 2020, 12, 11942-11966.	1.4	15
14	Accelerated epigenetic aging as a risk factor for chronic obstructive pulmonary disease and decreased lung function in two prospective cohort studies. Aging, 2020, 12, 16539-16554.	1.4	13
15	Smoking-Related DNA Methylation is Associated with DNA Methylation Phenotypic Age Acceleration: The Veterans Affairs Normative Aging Study. International Journal of Environmental Research and Public Health, 2019, 16, 2356.	1.2	22
16	Personal Fine Particulate Matter Constituents, Increased Systemic Inflammation, and the Role of DNA Hypomethylation. Environmental Science & Technology, 2019, 53, 9837-9844.	4.6	37
17	Optimism is not associated with two indicators of DNA methylation aging. Aging, 2019, 11, 4970-4989.	1.4	6
18	Comparative validation of an epigenetic mortality risk score with three aging biomarkers for predicting mortality risks among older adult males. International Journal of Epidemiology, 2019, 48, 1958-1971.	0.9	25

CUICUI WANG

#	Article	IF	CITATIONS
19	Estimation of residential fine particulate matter infiltration in Shanghai, China. Environmental Pollution, 2018, 233, 494-500.	3.7	40
20	Possible Mediation by Methylation in Acute Inflammation Following Personal Exposure to Fine Particulate Air Pollution. American Journal of Epidemiology, 2018, 187, 484-493.	1.6	48
21	Accelerated DNA methylation age and the use of antihypertensive medication among older adults. Aging, 2018, 10, 3210-3228.	1.4	21
22	Fine Particulate Air Pollution and the Expression of microRNAs and Circulating Cytokines Relevant to Inflammation, Coagulation, and Vasoconstriction. Environmental Health Perspectives, 2018, 126, 017007.	2.8	130
23	Estimation of personal PM2.5 and BC exposure by a modeling approach – Results of a panel study in Shanghai, China. Environment International, 2018, 118, 194-202.	4.8	36
24	Fine Particulate Constituents and Lung Dysfunction: A Time-Series Panel Study. Environmental Science & Technology, 2017, 51, 1687-1694.	4.6	51
25	Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara). Environmental Pollution, 2017, 225, 450-455.	3.7	60
26	Associations Between Air Quality Changes and Biomarkers of Systemic Inflammation During the 2014 Nanjing Youth Olympics: A Quasi-Experimental Study. American Journal of Epidemiology, 2017, 185, 1290-1296.	1.6	25
27	Acute effects of ambient temperature and particulate air pollution on fractional exhaled nitric oxide: A panel study among diabetic patients in Shanghai, China. Journal of Epidemiology, 2017, 27, 584-589.	1.1	22
28	Cardiovascular Benefits of Wearing Particulate-Filtering Respirators: A Randomized Crossover Trial. Environmental Health Perspectives, 2017, 125, 175-180.	2.8	72
29	Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide. Environmental Research Letters, 2016, 11, 074014.	2.2	13
30	DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: A randomized crossover trial. Environment International, 2016, 94, 614-619.	4.8	77
31	Personal exposure to fine particulate matter and blood pressure: A role of angiotensin converting enzyme and its DNA methylation. Environment International, 2016, 94, 661-666.	4.8	76
32	Association between fine particulate matter chemical constituents and airway inflammation: A panel study among healthy adults in China. Environmental Research, 2016, 150, 264-268.	3.7	65
33	The cold effects on circulatory inflammation, thrombosis and vasoconstriction in type 2 diabetic patients. Science of the Total Environment, 2016, 568, 271-277.	3.9	34
34	Size-fractionated Particulate Air Pollution and Circulating Biomarkers of Inflammation, Coagulation, and Vasoconstriction in a Panel of Young Adults. Epidemiology, 2015, 26, 328-336.	1.2	90
35	Cardiopulmonary Benefits of Reducing Indoor Particles of Outdoor Origin. Journal of the American College of Cardiology, 2015, 65, 2279-2287.	1.2	214
36	Short-term exposure to ambient air pollution and coronary heart disease mortality in 8 Chinese cities. International Journal of Cardiology, 2015, 197, 265-270.	0.8	70

CUICUI WANG

#	Article	IF	CITATIONS
37	The acute effects of outdoor temperature on blood pressure in a panel of elderly hypertensive patients. International Journal of Biometeorology, 2015, 59, 1791-1797.	1.3	18
38	Associations between size-fractionated particulate air pollution and blood pressure in a panel of type Il diabetes mellitus patients. Environment International, 2015, 80, 19-25.	4.8	33
39	Particulate air pollution and circulating biomarkers among type 2 diabetic mellitus patients: the roles of particle size and time windows of exposure. Environmental Research, 2015, 140, 112-118.	3.7	35
40	Ambient air pollution, blood mitochondrial DNA copy number and telomere length in a panel of diabetes patients. Inhalation Toxicology, 2015, 27, 481-487.	0.8	23
41	Fine Particulate Matter Constituents, Nitric Oxide Synthase DNA Methylation and Exhaled Nitric Oxide. Environmental Science & Technology, 2015, 49, 11859-11865.	4.6	96
42	Health benefits of improving air quality in Taiyuan, China. Environment International, 2014, 73, 235-242.	4.8	63
43	Public health benefits of reducing air pollution in Shanghai: A proof-of-concept methodology with application to BenMAP. Science of the Total Environment, 2014, 485-486, 396-405.	3.9	68
44	Temperature and daily mortality in Suzhou, China: A time series analysis. Science of the Total Environment, 2014, 466-467, 985-990.	3.9	63
45	Estimation of the effects of ambient air pollution on life expectancy of urban residents in China. Atmospheric Environment, 2013, 80, 347-351.	1.9	24
46	Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city. Science of the Total Environment, 2013, 458-460, 1-6.	3.9	71
47	Short-term effect of ambient air pollution on COPD mortality in four Chinese cities. Atmospheric Environment, 2013, 77, 149-154.	1.9	57
48	Both low and high temperature may increase the risk of stroke mortality. Neurology, 2013, 81, 1064-1070.	1.5	116